YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Bulletin of the American Meteorological Society
    • View Item
    •   YE&T Library
    • AMS
    • Bulletin of the American Meteorological Society
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Outcomes of the WMO Prize Challenge to Improve Subseasonal to Seasonal Predictions Using Artificial Intelligence

    Source: Bulletin of the American Meteorological Society:;2022:;volume( 103 ):;issue: 012::page E2878
    Author:
    F. Vitart
    ,
    A. W. Robertson
    ,
    A. Spring
    ,
    F. Pinault
    ,
    R. Roškar
    ,
    W. Cao
    ,
    S. Bech
    ,
    A. Bienkowski
    ,
    N. Caltabiano
    ,
    E. De Coning
    ,
    B. Denis
    ,
    A. Dirkson
    ,
    J. Dramsch
    ,
    P. Dueben
    ,
    J. Gierschendorf
    ,
    H. S. Kim
    ,
    K. Nowak
    ,
    D. Landry
    ,
    L. Lledó
    ,
    L. Palma
    ,
    S. Rasp
    ,
    S. Zhou
    DOI: 10.1175/BAMS-D-22-0046.1
    Publisher: American Meteorological Society
    Abstract: There is a high demand and expectation for subseasonal to seasonal (S2S) prediction, which provides forecasts beyond 2 weeks, but less than 3 months ahead. To assess the potential benefit of artificial intelligence (AI) methods for S2S prediction through better postprocessing of ensemble prediction system outputs, the World Meteorological Organization (WMO) coordinated a prize challenge in 2021 to improve subseasonal prediction. The goal of this competition was to produce the most skillful forecasts of precipitation and 2-m temperature globally averaged over forecast weeks 3 and 4 and over weeks 5 and 6 for the year 2020 using artificial intelligence techniques. The top three submissions, described in this article, succeeded in producing S2S forecasts significantly more skillful than the bias-corrected ECMWF operational reference forecasts, particularly for precipitation, through improved calibration of the ECMWF raw forecast outputs or multimodel combination. These forecast improvements should benefit the use of S2S forecasts in applications.
    • Download: (1.546Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Outcomes of the WMO Prize Challenge to Improve Subseasonal to Seasonal Predictions Using Artificial Intelligence

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4290358
    Collections
    • Bulletin of the American Meteorological Society

    Show full item record

    contributor authorF. Vitart
    contributor authorA. W. Robertson
    contributor authorA. Spring
    contributor authorF. Pinault
    contributor authorR. Roškar
    contributor authorW. Cao
    contributor authorS. Bech
    contributor authorA. Bienkowski
    contributor authorN. Caltabiano
    contributor authorE. De Coning
    contributor authorB. Denis
    contributor authorA. Dirkson
    contributor authorJ. Dramsch
    contributor authorP. Dueben
    contributor authorJ. Gierschendorf
    contributor authorH. S. Kim
    contributor authorK. Nowak
    contributor authorD. Landry
    contributor authorL. Lledó
    contributor authorL. Palma
    contributor authorS. Rasp
    contributor authorS. Zhou
    date accessioned2023-04-12T18:51:18Z
    date available2023-04-12T18:51:18Z
    date copyright2022/12/13
    date issued2022
    identifier otherBAMS-D-22-0046.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4290358
    description abstractThere is a high demand and expectation for subseasonal to seasonal (S2S) prediction, which provides forecasts beyond 2 weeks, but less than 3 months ahead. To assess the potential benefit of artificial intelligence (AI) methods for S2S prediction through better postprocessing of ensemble prediction system outputs, the World Meteorological Organization (WMO) coordinated a prize challenge in 2021 to improve subseasonal prediction. The goal of this competition was to produce the most skillful forecasts of precipitation and 2-m temperature globally averaged over forecast weeks 3 and 4 and over weeks 5 and 6 for the year 2020 using artificial intelligence techniques. The top three submissions, described in this article, succeeded in producing S2S forecasts significantly more skillful than the bias-corrected ECMWF operational reference forecasts, particularly for precipitation, through improved calibration of the ECMWF raw forecast outputs or multimodel combination. These forecast improvements should benefit the use of S2S forecasts in applications.
    publisherAmerican Meteorological Society
    titleOutcomes of the WMO Prize Challenge to Improve Subseasonal to Seasonal Predictions Using Artificial Intelligence
    typeJournal Paper
    journal volume103
    journal issue12
    journal titleBulletin of the American Meteorological Society
    identifier doi10.1175/BAMS-D-22-0046.1
    journal fristpageE2878
    journal lastpageE2886
    pageE2878–E2886
    treeBulletin of the American Meteorological Society:;2022:;volume( 103 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian