YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Spurious Climate Impacts in Coupled Sea Ice Loss Simulations

    Source: Journal of Climate:;2022:;volume( 035 ):;issue: 022::page 3801
    Author:
    Mark R. England
    ,
    Ian Eisenman
    ,
    Till J. W. Wagner
    DOI: 10.1175/JCLI-D-21-0647.1
    Publisher: American Meteorological Society
    Abstract: Previous studies have used coupled climate model simulations with perturbed sea ice covers to assess the impact of future Arctic sea ice loss. The results of these studies suggest that Arctic sea ice loss will cause substantial climate impacts in the Arctic and beyond. The approaches used in these simulations can be broadly categorized into three methods: adding a ghost flux to the sea ice module, nudging, and modifying the surface albedo. Here we show that all three methods ultimately add heat to the Arctic in order to melt the sea ice, and that this artificial heating causes a spurious warming signal that is added to the warming that occurs due to sea ice loss alone. We illustrate this using an idealized climate model, which provides a preliminary rough estimate of the effect. In this model, the annual-mean warming due to sea ice loss alone can be directly calculated. We compare this with the warming that would be attributed to sea ice loss using each of the three methods in the idealized model. The results suggest that each method substantially overestimates the warming due to sea ice loss alone, overestimating the surface warming throughout the Northern Hemisphere by a factor of 1.5–2 in the idealized model. Hence, these results suggest that previous coupled climate modeling studies have overestimated the climate response to sea ice loss.
    • Download: (1.063Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Spurious Climate Impacts in Coupled Sea Ice Loss Simulations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4290106
    Collections
    • Journal of Climate

    Show full item record

    contributor authorMark R. England
    contributor authorIan Eisenman
    contributor authorTill J. W. Wagner
    date accessioned2023-04-12T18:42:30Z
    date available2023-04-12T18:42:30Z
    date copyright2022/11/02
    date issued2022
    identifier otherJCLI-D-21-0647.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4290106
    description abstractPrevious studies have used coupled climate model simulations with perturbed sea ice covers to assess the impact of future Arctic sea ice loss. The results of these studies suggest that Arctic sea ice loss will cause substantial climate impacts in the Arctic and beyond. The approaches used in these simulations can be broadly categorized into three methods: adding a ghost flux to the sea ice module, nudging, and modifying the surface albedo. Here we show that all three methods ultimately add heat to the Arctic in order to melt the sea ice, and that this artificial heating causes a spurious warming signal that is added to the warming that occurs due to sea ice loss alone. We illustrate this using an idealized climate model, which provides a preliminary rough estimate of the effect. In this model, the annual-mean warming due to sea ice loss alone can be directly calculated. We compare this with the warming that would be attributed to sea ice loss using each of the three methods in the idealized model. The results suggest that each method substantially overestimates the warming due to sea ice loss alone, overestimating the surface warming throughout the Northern Hemisphere by a factor of 1.5–2 in the idealized model. Hence, these results suggest that previous coupled climate modeling studies have overestimated the climate response to sea ice loss.
    publisherAmerican Meteorological Society
    titleSpurious Climate Impacts in Coupled Sea Ice Loss Simulations
    typeJournal Paper
    journal volume35
    journal issue22
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-21-0647.1
    journal fristpage3801
    journal lastpage3811
    page3801–3811
    treeJournal of Climate:;2022:;volume( 035 ):;issue: 022
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian