YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Anthropogenic Influence on the Diurnal Temperature Range since 1901

    Source: Journal of Climate:;2022:;volume( 035 ):;issue: 022::page 3583
    Author:
    Chunhui Lu
    ,
    Ying Sun
    ,
    Xuebin Zhang
    DOI: 10.1175/JCLI-D-21-0928.1
    Publisher: American Meteorological Society
    Abstract: The diurnal temperature range (DTR) as measured by the difference between daily maximum (Tmax) and minimum (Tmin) temperatures is of great importance to human health, ecology, and agriculture. The link of its long-term change to anthropogenic forcing is still unclear. This study shows evidence of human influence on long-term changes in DTR over the globe, five continents, and China during the past century (1901–2014). Using multiple observational datasets, we find a general decrease in the DTR over most of the global land since 1901, especially after the mid-1950s. Changes in DTR are due to different warming rates of Tmax and Tmin in response to external forcings. The climate models that participated in phase 6 of the Coupled Model Intercomparison Project Phase 6 (CMIP6) generally reproduce most of the changes in DTR, along with those in Tmax and Tmin. The models have underestimated the observed changes in DTR, however. A formal detection and attribution analysis shows that the anthropogenic forcing signal, including both greenhouse gas and aerosol emissions but dominated by the greenhouse gas emissions, is the main driver for these changes. The anthropogenic aerosol signal can be detected in Tmax and Tmin but not in DTR during the period of 1901–2014 over the globe and most continents. These indicate the observed decrease in DTR is not a simple response to anthropogenic aerosol emission. The natural signal is negligible in almost all the cases. Globally, anthropogenic influence is estimated to explain more than 90% of the observed changes in the three variables. In China, human influence is also clearly detected, although model simulated results on the regional scale have larger deviation.
    • Download: (3.184Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Anthropogenic Influence on the Diurnal Temperature Range since 1901

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4290089
    Collections
    • Journal of Climate

    Show full item record

    contributor authorChunhui Lu
    contributor authorYing Sun
    contributor authorXuebin Zhang
    date accessioned2023-04-12T18:41:49Z
    date available2023-04-12T18:41:49Z
    date copyright2022/10/31
    date issued2022
    identifier otherJCLI-D-21-0928.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4290089
    description abstractThe diurnal temperature range (DTR) as measured by the difference between daily maximum (Tmax) and minimum (Tmin) temperatures is of great importance to human health, ecology, and agriculture. The link of its long-term change to anthropogenic forcing is still unclear. This study shows evidence of human influence on long-term changes in DTR over the globe, five continents, and China during the past century (1901–2014). Using multiple observational datasets, we find a general decrease in the DTR over most of the global land since 1901, especially after the mid-1950s. Changes in DTR are due to different warming rates of Tmax and Tmin in response to external forcings. The climate models that participated in phase 6 of the Coupled Model Intercomparison Project Phase 6 (CMIP6) generally reproduce most of the changes in DTR, along with those in Tmax and Tmin. The models have underestimated the observed changes in DTR, however. A formal detection and attribution analysis shows that the anthropogenic forcing signal, including both greenhouse gas and aerosol emissions but dominated by the greenhouse gas emissions, is the main driver for these changes. The anthropogenic aerosol signal can be detected in Tmax and Tmin but not in DTR during the period of 1901–2014 over the globe and most continents. These indicate the observed decrease in DTR is not a simple response to anthropogenic aerosol emission. The natural signal is negligible in almost all the cases. Globally, anthropogenic influence is estimated to explain more than 90% of the observed changes in the three variables. In China, human influence is also clearly detected, although model simulated results on the regional scale have larger deviation.
    publisherAmerican Meteorological Society
    titleAnthropogenic Influence on the Diurnal Temperature Range since 1901
    typeJournal Paper
    journal volume35
    journal issue22
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-21-0928.1
    journal fristpage3583
    journal lastpage3598
    page3583–3598
    treeJournal of Climate:;2022:;volume( 035 ):;issue: 022
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian