YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Two Extratropical Pathways to Forcing Tropical Convective Disturbances

    Source: Journal of Climate:;2022:;volume( 035 ):;issue: 020::page 2987
    Author:
    Yuan-Ming Cheng
    ,
    Stefan Tulich
    ,
    George N. Kiladis
    ,
    Juliana Dias
    DOI: 10.1175/JCLI-D-22-0171.1
    Publisher: American Meteorological Society
    Abstract: Observational evidence of two extratropical pathways to forcing tropical convective disturbances is documented through a statistical analysis of satellite-derived OLR and ERA5 reanalysis. The forcing mechanism and the resulting disturbances are found to strongly depend on the structure of the background zonal wind. Although Rossby wave propagation is prohibited in easterlies, modeling studies have shown that extratropical forcing can still excite equatorial waves through resonance between the tropics and extratropics. Here this “remote” forcing pathway is investigated for the first time in the context of convectively coupled Kelvin waves over the tropical Pacific during northern summer. The extratropical forcing is manifested by eddy momentum flux convergence that arises when extratropical eddies propagate into the subtropics and encounter their critical line. This nonlinear forcing has similar wavenumbers and frequencies with Kelvin waves and excites them by projecting onto their meridional eigenstructure in zonal wind, as a form of resonance. This resonance is also evidenced by a momentum budget analysis, which reveals the nonlinear forcing term is essential for maintenance of the waves, while the remaining linear terms are essential for propagation. In contrast, the “local” pathway of extratropical forcing entails the presence of a westerly duct during northern winter that permits Rossby waves to propagate into the equatorial east Pacific, while precluding any sort of resonance with Kelvin waves due to Doppler shifting effects. The intruding disturbances primarily excite tropical “cloud plumes” through quasigeostrophic forcing, while maintaining their extratropical nature. This study demonstrates the multiple roles of the extratropics in forcing in tropical circulations and illuminates how tropical–extratropical interactions and extratropical basic states can provide be a source of predictability at the S2S time scale.
    • Download: (4.464Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Two Extratropical Pathways to Forcing Tropical Convective Disturbances

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289971
    Collections
    • Journal of Climate

    Show full item record

    contributor authorYuan-Ming Cheng
    contributor authorStefan Tulich
    contributor authorGeorge N. Kiladis
    contributor authorJuliana Dias
    date accessioned2023-04-12T18:37:14Z
    date available2023-04-12T18:37:14Z
    date copyright2022/09/23
    date issued2022
    identifier otherJCLI-D-22-0171.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289971
    description abstractObservational evidence of two extratropical pathways to forcing tropical convective disturbances is documented through a statistical analysis of satellite-derived OLR and ERA5 reanalysis. The forcing mechanism and the resulting disturbances are found to strongly depend on the structure of the background zonal wind. Although Rossby wave propagation is prohibited in easterlies, modeling studies have shown that extratropical forcing can still excite equatorial waves through resonance between the tropics and extratropics. Here this “remote” forcing pathway is investigated for the first time in the context of convectively coupled Kelvin waves over the tropical Pacific during northern summer. The extratropical forcing is manifested by eddy momentum flux convergence that arises when extratropical eddies propagate into the subtropics and encounter their critical line. This nonlinear forcing has similar wavenumbers and frequencies with Kelvin waves and excites them by projecting onto their meridional eigenstructure in zonal wind, as a form of resonance. This resonance is also evidenced by a momentum budget analysis, which reveals the nonlinear forcing term is essential for maintenance of the waves, while the remaining linear terms are essential for propagation. In contrast, the “local” pathway of extratropical forcing entails the presence of a westerly duct during northern winter that permits Rossby waves to propagate into the equatorial east Pacific, while precluding any sort of resonance with Kelvin waves due to Doppler shifting effects. The intruding disturbances primarily excite tropical “cloud plumes” through quasigeostrophic forcing, while maintaining their extratropical nature. This study demonstrates the multiple roles of the extratropics in forcing in tropical circulations and illuminates how tropical–extratropical interactions and extratropical basic states can provide be a source of predictability at the S2S time scale.
    publisherAmerican Meteorological Society
    titleTwo Extratropical Pathways to Forcing Tropical Convective Disturbances
    typeJournal Paper
    journal volume35
    journal issue20
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-22-0171.1
    journal fristpage2987
    journal lastpage3009
    page2987–3009
    treeJournal of Climate:;2022:;volume( 035 ):;issue: 020
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian