YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Transition from Practical to Intrinsic Predictability of Midlatitude Weather

    Source: Journal of the Atmospheric Sciences:;2022:;volume( 079 ):;issue: 008::page 2013
    Author:
    Tobias Selz
    ,
    Michael Riemer
    ,
    George C. Craig
    DOI: 10.1175/JAS-D-21-0271.1
    Publisher: American Meteorological Society
    Abstract: This study investigates the transition from current practical predictability of midlatitude weather to its intrinsic limit. For this purpose, estimates of the current initial condition uncertainty of 12 real cases are reduced in several steps from 100% to 0.1% and propagated in time with a global numerical weather prediction model (ICON at 40 km resolution) that is extended by a stochastic convection scheme to better represent error growth from unresolved motions. With the provision that the perfect model assumption is sufficiently valid, it is found that the potential forecast improvement that could be obtained by perfecting the initial conditions is 4–5 days. This improvement is essentially achieved with an initial condition uncertainty reduction by 90% relative to current conditions, at which point the dominant error growth mechanism changes: With respect to physical processes, a transition occurs from rotationally driven initial error growth to error growth dominated by latent heat release in convection and due to the divergent component of the flow. With respect to spatial scales, a transition from large-scale up-amplitude error growth to a very rapid initial error growth on small scales is found. Reference experiments with a deterministic convection scheme show a 5%–10% longer predictability, but only if the initial condition uncertainty is small. These results confirm that planetary-scale predictability is intrinsically limited by rapid error growth due to latent heat release in clouds through an upscale-interaction process, while this interaction process is unimportant on average for current levels of initial condition uncertainty.
    • Download: (1.903Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Transition from Practical to Intrinsic Predictability of Midlatitude Weather

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289760
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorTobias Selz
    contributor authorMichael Riemer
    contributor authorGeorge C. Craig
    date accessioned2023-04-12T18:29:33Z
    date available2023-04-12T18:29:33Z
    date copyright2022/08/01
    date issued2022
    identifier otherJAS-D-21-0271.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289760
    description abstractThis study investigates the transition from current practical predictability of midlatitude weather to its intrinsic limit. For this purpose, estimates of the current initial condition uncertainty of 12 real cases are reduced in several steps from 100% to 0.1% and propagated in time with a global numerical weather prediction model (ICON at 40 km resolution) that is extended by a stochastic convection scheme to better represent error growth from unresolved motions. With the provision that the perfect model assumption is sufficiently valid, it is found that the potential forecast improvement that could be obtained by perfecting the initial conditions is 4–5 days. This improvement is essentially achieved with an initial condition uncertainty reduction by 90% relative to current conditions, at which point the dominant error growth mechanism changes: With respect to physical processes, a transition occurs from rotationally driven initial error growth to error growth dominated by latent heat release in convection and due to the divergent component of the flow. With respect to spatial scales, a transition from large-scale up-amplitude error growth to a very rapid initial error growth on small scales is found. Reference experiments with a deterministic convection scheme show a 5%–10% longer predictability, but only if the initial condition uncertainty is small. These results confirm that planetary-scale predictability is intrinsically limited by rapid error growth due to latent heat release in clouds through an upscale-interaction process, while this interaction process is unimportant on average for current levels of initial condition uncertainty.
    publisherAmerican Meteorological Society
    titleThe Transition from Practical to Intrinsic Predictability of Midlatitude Weather
    typeJournal Paper
    journal volume79
    journal issue8
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-21-0271.1
    journal fristpage2013
    journal lastpage2030
    page2013–2030
    treeJournal of the Atmospheric Sciences:;2022:;volume( 079 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian