YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bridge Performance Warning Based on Two-Stage Elimination of Environment-Induced Frequency

    Source: Journal of Performance of Constructed Facilities:;2022:;Volume ( 036 ):;issue: 006::page 04022056
    Author:
    Zhen Wang
    ,
    Ting-Hua Yi
    ,
    Dong-Hui Yang
    ,
    Hong-Nan Li
    ,
    Hua Liu
    DOI: 10.1061/(ASCE)CF.1943-5509.0001760
    Publisher: ASCE
    Abstract: Bridge modal frequency is an important parameter reflecting its overall property change and widely used for bridge condition assessment. However, the effects of multiple environmental conditions on the modal frequency will mask the variation induced by structural damage. Traditional single regression models cannot quantify measurable and unmeasurable environmental effects simultaneously, resulting in poor prediction and separation performance. Therefore, a two-stage elimination model (TSEM) integrating regression analysis and trend decomposition technique was developed. Environmental principal components (PCs) sensitive to the single-order modal frequency were extracted based on partial least-squares analysis. To quantify the nonlinear effects of measurable environmental factors, the baseline predictor with respect to modal frequency and environmental PCs was constructed through relevance vector machine technology. An error compensation model based on singular spectrum analysis was established to extract trend-related components and remove the part of residual modal variability unknot considered by the baseline model. On this basis, exponential weighted moving average control chart was established to highlight slight abnormal changes in modal frequency. A cable-stayed bridge case verified its validity and accuracy. The results indicate that the proposed TSEM has better modeling, generalization, and separation performance than the baseline model, and the variation of normalized frequency tends to be more stable. Additionally, the significant differences of damage sensitivity of different orders were determined.
    • Download: (4.030Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bridge Performance Warning Based on Two-Stage Elimination of Environment-Induced Frequency

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289528
    Collections
    • Journal of Performance of Constructed Facilities

    Show full item record

    contributor authorZhen Wang
    contributor authorTing-Hua Yi
    contributor authorDong-Hui Yang
    contributor authorHong-Nan Li
    contributor authorHua Liu
    date accessioned2023-04-07T00:40:40Z
    date available2023-04-07T00:40:40Z
    date issued2022/12/01
    identifier other%28ASCE%29CF.1943-5509.0001760.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289528
    description abstractBridge modal frequency is an important parameter reflecting its overall property change and widely used for bridge condition assessment. However, the effects of multiple environmental conditions on the modal frequency will mask the variation induced by structural damage. Traditional single regression models cannot quantify measurable and unmeasurable environmental effects simultaneously, resulting in poor prediction and separation performance. Therefore, a two-stage elimination model (TSEM) integrating regression analysis and trend decomposition technique was developed. Environmental principal components (PCs) sensitive to the single-order modal frequency were extracted based on partial least-squares analysis. To quantify the nonlinear effects of measurable environmental factors, the baseline predictor with respect to modal frequency and environmental PCs was constructed through relevance vector machine technology. An error compensation model based on singular spectrum analysis was established to extract trend-related components and remove the part of residual modal variability unknot considered by the baseline model. On this basis, exponential weighted moving average control chart was established to highlight slight abnormal changes in modal frequency. A cable-stayed bridge case verified its validity and accuracy. The results indicate that the proposed TSEM has better modeling, generalization, and separation performance than the baseline model, and the variation of normalized frequency tends to be more stable. Additionally, the significant differences of damage sensitivity of different orders were determined.
    publisherASCE
    titleBridge Performance Warning Based on Two-Stage Elimination of Environment-Induced Frequency
    typeJournal Article
    journal volume36
    journal issue6
    journal titleJournal of Performance of Constructed Facilities
    identifier doi10.1061/(ASCE)CF.1943-5509.0001760
    journal fristpage04022056
    journal lastpage04022056_11
    page11
    treeJournal of Performance of Constructed Facilities:;2022:;Volume ( 036 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian