YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design and Performance of a Tuned Vibration Absorber for a Full-Scale Lightweight FRP Pedestrian Structure

    Source: Journal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 006::page 04022077
    Author:
    Christian Gallegos-Calderón
    ,
    Javier Naranjo-Pérez
    ,
    Jaime H. García-Palacios
    ,
    Iván M. Díaz
    DOI: 10.1061/(ASCE)CC.1943-5614.0001270
    Publisher: ASCE
    Abstract: Fiber-reinforced polymers (FRPs) have enabled the construction of lightweight footbridges, whose structural design is often governed by a serviceability limit state. A suitable approach to avoid overdimensioning an FRP footbridge may be to adopt a motion-based design strategy, where excessive human-induced vibrations are mitigated through the installation of tuned vibration absorbers (TVAs). In this sense, human–structure interaction (HSI) phenomena should be considered to estimate accurately the acceleration response of lightweight footbridges and size TVAs properly. Thus, this paper presents the design, installation, and performance assessment of a passive inertial controller for completing the construction of a full-scale FRP pedestrian structure. First, a general frequency-domain procedure to design TVAs for structures susceptible to HSI is proposed. The methodology considers a multiobjective optimization problem that minimizes simultaneously the structural response and the controller inertial mass. Second, the HSI load model of a bouncing pedestrian is identified experimentally to be used within the proposal to design TVAs. Third, a TVA of 25 kg is designed, assembled, and installed in the lightweight FRP structure, employing the proposed procedure. Then, the enhancement of the dynamic response due to the controller is assessed considering a person bouncing and two streams of walking pedestrians. For the different load scenarios, the TVA exhibits an adequate behavior to mitigate the vertical acceleration, demonstrating the feasibility to deliver an ultralightweight FRP footbridge with an inertial controller to meet requirements at different limit states.
    • Download: (2.341Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design and Performance of a Tuned Vibration Absorber for a Full-Scale Lightweight FRP Pedestrian Structure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289501
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorChristian Gallegos-Calderón
    contributor authorJavier Naranjo-Pérez
    contributor authorJaime H. García-Palacios
    contributor authorIván M. Díaz
    date accessioned2023-04-07T00:39:52Z
    date available2023-04-07T00:39:52Z
    date issued2022/12/01
    identifier other%28ASCE%29CC.1943-5614.0001270.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289501
    description abstractFiber-reinforced polymers (FRPs) have enabled the construction of lightweight footbridges, whose structural design is often governed by a serviceability limit state. A suitable approach to avoid overdimensioning an FRP footbridge may be to adopt a motion-based design strategy, where excessive human-induced vibrations are mitigated through the installation of tuned vibration absorbers (TVAs). In this sense, human–structure interaction (HSI) phenomena should be considered to estimate accurately the acceleration response of lightweight footbridges and size TVAs properly. Thus, this paper presents the design, installation, and performance assessment of a passive inertial controller for completing the construction of a full-scale FRP pedestrian structure. First, a general frequency-domain procedure to design TVAs for structures susceptible to HSI is proposed. The methodology considers a multiobjective optimization problem that minimizes simultaneously the structural response and the controller inertial mass. Second, the HSI load model of a bouncing pedestrian is identified experimentally to be used within the proposal to design TVAs. Third, a TVA of 25 kg is designed, assembled, and installed in the lightweight FRP structure, employing the proposed procedure. Then, the enhancement of the dynamic response due to the controller is assessed considering a person bouncing and two streams of walking pedestrians. For the different load scenarios, the TVA exhibits an adequate behavior to mitigate the vertical acceleration, demonstrating the feasibility to deliver an ultralightweight FRP footbridge with an inertial controller to meet requirements at different limit states.
    publisherASCE
    titleDesign and Performance of a Tuned Vibration Absorber for a Full-Scale Lightweight FRP Pedestrian Structure
    typeJournal Article
    journal volume26
    journal issue6
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001270
    journal fristpage04022077
    journal lastpage04022077_14
    page14
    treeJournal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian