YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effectiveness of Pavement Grooving in Skidding Prevention on Horizontal Curves

    Source: Journal of Transportation Engineering, Part B: Pavements:;2022:;Volume ( 148 ):;issue: 004::page 04022054
    Author:
    L. Chu
    ,
    Jia Peng
    ,
    Y. Liu
    ,
    T. F. Fwa
    DOI: 10.1061/JPEODX.0000404
    Publisher: ASCE
    Abstract: Pavement grooving is an accepted remedial measure to improve skid resistance and reduce crash rates on horizontal curves. However, besides experience-based guidelines, currently no mechanistic procedure is available for quantitative evaluation of the effectiveness of a pavement grooving design in skidding prevention on horizontal curves. To ensure driving safety on wet horizontal curves in particular, there is a practical need for a reliable procedure to determine the effectiveness of a pavement grooving design in increasing tire–pavement skid resistance and the maximum safe driving speed. With the aim to bridge the knowledge gap, this paper presents a computer simulation procedure based on the finite-element method to evaluate the effectiveness of a pavement grooving design in terms of its ability to increase the maximum safe vehicle speed and reduce skidding potential on a wet horizontal curve. For illustration, three common grooving designs were considered, each having a different groove width, depth, and spacing. For each grooving design, two orientations of grooving, namely longitudinal and transverse grooves, were studied. The simulation model allowed different operating conditions to be analyzed, including different geometric dimensions of a horizontal curve, pavement surface properties, and pavement surface water film thicknesses. The analysis not only confirmed past observations and measurements that longitudinal grooving was significantly more effective than transverse grooving in raising pavement skid resistance and the maximum safe driving speed on horizontal curves, but also quantitatively provided their respective magnitudes of improvement.
    • Download: (3.171Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effectiveness of Pavement Grooving in Skidding Prevention on Horizontal Curves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289485
    Collections
    • Journal of Transportation Engineering, Part B: Pavements

    Show full item record

    contributor authorL. Chu
    contributor authorJia Peng
    contributor authorY. Liu
    contributor authorT. F. Fwa
    date accessioned2023-04-07T00:39:30Z
    date available2023-04-07T00:39:30Z
    date issued2022/12/01
    identifier otherJPEODX.0000404.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289485
    description abstractPavement grooving is an accepted remedial measure to improve skid resistance and reduce crash rates on horizontal curves. However, besides experience-based guidelines, currently no mechanistic procedure is available for quantitative evaluation of the effectiveness of a pavement grooving design in skidding prevention on horizontal curves. To ensure driving safety on wet horizontal curves in particular, there is a practical need for a reliable procedure to determine the effectiveness of a pavement grooving design in increasing tire–pavement skid resistance and the maximum safe driving speed. With the aim to bridge the knowledge gap, this paper presents a computer simulation procedure based on the finite-element method to evaluate the effectiveness of a pavement grooving design in terms of its ability to increase the maximum safe vehicle speed and reduce skidding potential on a wet horizontal curve. For illustration, three common grooving designs were considered, each having a different groove width, depth, and spacing. For each grooving design, two orientations of grooving, namely longitudinal and transverse grooves, were studied. The simulation model allowed different operating conditions to be analyzed, including different geometric dimensions of a horizontal curve, pavement surface properties, and pavement surface water film thicknesses. The analysis not only confirmed past observations and measurements that longitudinal grooving was significantly more effective than transverse grooving in raising pavement skid resistance and the maximum safe driving speed on horizontal curves, but also quantitatively provided their respective magnitudes of improvement.
    publisherASCE
    titleEffectiveness of Pavement Grooving in Skidding Prevention on Horizontal Curves
    typeJournal Article
    journal volume148
    journal issue4
    journal titleJournal of Transportation Engineering, Part B: Pavements
    identifier doi10.1061/JPEODX.0000404
    journal fristpage04022054
    journal lastpage04022054_12
    page12
    treeJournal of Transportation Engineering, Part B: Pavements:;2022:;Volume ( 148 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian