YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Concrete-Filled FRP Tubes under Combined Torsion and Bending

    Source: Journal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 006::page 04022073
    Author:
    James St. Onge
    ,
    Amir Fam
    DOI: 10.1061/(ASCE)CC.1943-5614.0001263
    Publisher: ASCE
    Abstract: The combined torsion and bending response of concrete-filled fiber-reinforced polymer (FRP) tubes (CFFTs) was investigated in this study. The CFFT samples were produced from the same 166-mm-diameter nearly cross-ply filament wound glass-FRP (GFRP) tubes with a 30 MPa concrete infill. The samples were tested at torque-to-bending moment ratios (T/M) of 2, 1, and 0.67, as well as under pure bending and pure torsion, to cover a wide range of loading cases. The study showed that ultimate torque and bending moment were minimally affected when combined with normalized bending moments (Mu/Muo) and normalized torques (Tu/Tuo) ≤ 0.5, respectively. A circular normalized ultimate strength interaction could reasonably predict the trend of the experimental data. The postcracking torsional stiffness was not greatly affected by flexure; however, late-stage stiffness was improved at T/M = 2, while it was reduced at T/M = 0.67. The flexural stiffness remained largely unchanged with T/M. Reducing T/M from 2 to 0.67 reduced the twist capacity from 52% to 27% of that at pure torsion but increased the deflection from 41% to 75% of that at pure flexure. Reducing T/M from pure torsion reduces the hoop and shear strains and produces a longitudinal strain gradient over the section height. The strain gradient limits the formation of diagonal cracks in the flexural compression region, reduces the number of cracks, and produces a crack angle variation through the section depth. Failure initiates from rupture of the FRP tube under a complex state of in-plane normal and shear stresses at the flexural tension side of the tube, followed by failure of the concrete core, which experiences partial confinement.
    • Download: (2.671Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Concrete-Filled FRP Tubes under Combined Torsion and Bending

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289445
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorJames St. Onge
    contributor authorAmir Fam
    date accessioned2023-04-07T00:38:19Z
    date available2023-04-07T00:38:19Z
    date issued2022/12/01
    identifier other%28ASCE%29CC.1943-5614.0001263.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289445
    description abstractThe combined torsion and bending response of concrete-filled fiber-reinforced polymer (FRP) tubes (CFFTs) was investigated in this study. The CFFT samples were produced from the same 166-mm-diameter nearly cross-ply filament wound glass-FRP (GFRP) tubes with a 30 MPa concrete infill. The samples were tested at torque-to-bending moment ratios (T/M) of 2, 1, and 0.67, as well as under pure bending and pure torsion, to cover a wide range of loading cases. The study showed that ultimate torque and bending moment were minimally affected when combined with normalized bending moments (Mu/Muo) and normalized torques (Tu/Tuo) ≤ 0.5, respectively. A circular normalized ultimate strength interaction could reasonably predict the trend of the experimental data. The postcracking torsional stiffness was not greatly affected by flexure; however, late-stage stiffness was improved at T/M = 2, while it was reduced at T/M = 0.67. The flexural stiffness remained largely unchanged with T/M. Reducing T/M from 2 to 0.67 reduced the twist capacity from 52% to 27% of that at pure torsion but increased the deflection from 41% to 75% of that at pure flexure. Reducing T/M from pure torsion reduces the hoop and shear strains and produces a longitudinal strain gradient over the section height. The strain gradient limits the formation of diagonal cracks in the flexural compression region, reduces the number of cracks, and produces a crack angle variation through the section depth. Failure initiates from rupture of the FRP tube under a complex state of in-plane normal and shear stresses at the flexural tension side of the tube, followed by failure of the concrete core, which experiences partial confinement.
    publisherASCE
    titleConcrete-Filled FRP Tubes under Combined Torsion and Bending
    typeJournal Article
    journal volume26
    journal issue6
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001263
    journal fristpage04022073
    journal lastpage04022073_14
    page14
    treeJournal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian