YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multilevel Partitioning with Multiple Strategies for Complex Water Distribution Network

    Source: Journal of Water Resources Planning and Management:;2022:;Volume ( 148 ):;issue: 012::page 04022064
    Author:
    Junren Tian
    ,
    Zhihong Long
    ,
    ZiPeng Zhu
    ,
    Gang Xu
    ,
    Weiping Cheng
    DOI: 10.1061/(ASCE)WR.1943-5452.0001622
    Publisher: ASCE
    Abstract: The operation and dispatching of large-scale water supply systems is becoming more and more complex, and effective partitioning is a good response measure to this increasing complexity. This paper presents a multilevel partitioning method using freely configurable strategies suitable for multiobjective situations such as allocation of water sources, pressure regulation, and flow measurement. The method mainly relies on two strategies. Using Strategy A, water supply features are constructed based on water sources and a partition clustering is implemented that is suitable for the overall partitioning of a water supply from multiple sources. Using Strategy B, important pipes are first extracted to simplify the search path and then various constraints (pressure boundary, flow shunt, cross-river management) are used to select control points and partition by graph theory searching. This strategy is suitable for refining partitioning of the structure of a specific source. A combination of the aforementioned strategies was applied to the first-level and second-level partitioning in a case study. By flexibly configuring strategies and constraints, good partitioning is achieved and multiple management goals are accomplished satisfactorily. This research enhances understanding of the operational issues in complex water systems. The overall management of water networks can be disassembled into tasks at all levels and with their own objectives performed in stages. The solution provided in this study has the advantages of flexibility and effectiveness for a variety of complex water distribution situations, contributing insights into the real challenges of partitioning large water distribution networks. The multilevel partitioning method proposed in our study is mainly aimed at large and complex water distribution networks. In practical applications, the complicated relationships in the pipe network are simplified as much as possible, thereby reducing complexity in the management of water supply systems. Specifically, Strategy A partitions for allocation of multiple sources under the influence of the water source, and Strategy B partitions for multiobjective network decomposition under various constraints (such as pressure boundaries, cross-river management, and flow metering). By implementing these methods, practical advantages will be obtained for water utilities: (1) pressure regulation is simpler, (2) water pollution is easy to track, and (3) personnel and scheduling management is simplified. Related and potential applications include boundary pipeline management and cross-regional water transfer in first-level partitioning. Most pipelines with weak water supply capacity on the boundary play a small role in the transfer of water between subdistricts, and some valves can be closed in a targeted manner to clarify the management boundary and reduce management complexity. After capacity analysis of water plants, the management unit has a relatively scientific supporting basis for water transfer in actual operation.
    • Download: (3.342Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multilevel Partitioning with Multiple Strategies for Complex Water Distribution Network

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289439
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorJunren Tian
    contributor authorZhihong Long
    contributor authorZiPeng Zhu
    contributor authorGang Xu
    contributor authorWeiping Cheng
    date accessioned2023-04-07T00:38:08Z
    date available2023-04-07T00:38:08Z
    date issued2022/12/01
    identifier other%28ASCE%29WR.1943-5452.0001622.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289439
    description abstractThe operation and dispatching of large-scale water supply systems is becoming more and more complex, and effective partitioning is a good response measure to this increasing complexity. This paper presents a multilevel partitioning method using freely configurable strategies suitable for multiobjective situations such as allocation of water sources, pressure regulation, and flow measurement. The method mainly relies on two strategies. Using Strategy A, water supply features are constructed based on water sources and a partition clustering is implemented that is suitable for the overall partitioning of a water supply from multiple sources. Using Strategy B, important pipes are first extracted to simplify the search path and then various constraints (pressure boundary, flow shunt, cross-river management) are used to select control points and partition by graph theory searching. This strategy is suitable for refining partitioning of the structure of a specific source. A combination of the aforementioned strategies was applied to the first-level and second-level partitioning in a case study. By flexibly configuring strategies and constraints, good partitioning is achieved and multiple management goals are accomplished satisfactorily. This research enhances understanding of the operational issues in complex water systems. The overall management of water networks can be disassembled into tasks at all levels and with their own objectives performed in stages. The solution provided in this study has the advantages of flexibility and effectiveness for a variety of complex water distribution situations, contributing insights into the real challenges of partitioning large water distribution networks. The multilevel partitioning method proposed in our study is mainly aimed at large and complex water distribution networks. In practical applications, the complicated relationships in the pipe network are simplified as much as possible, thereby reducing complexity in the management of water supply systems. Specifically, Strategy A partitions for allocation of multiple sources under the influence of the water source, and Strategy B partitions for multiobjective network decomposition under various constraints (such as pressure boundaries, cross-river management, and flow metering). By implementing these methods, practical advantages will be obtained for water utilities: (1) pressure regulation is simpler, (2) water pollution is easy to track, and (3) personnel and scheduling management is simplified. Related and potential applications include boundary pipeline management and cross-regional water transfer in first-level partitioning. Most pipelines with weak water supply capacity on the boundary play a small role in the transfer of water between subdistricts, and some valves can be closed in a targeted manner to clarify the management boundary and reduce management complexity. After capacity analysis of water plants, the management unit has a relatively scientific supporting basis for water transfer in actual operation.
    publisherASCE
    titleMultilevel Partitioning with Multiple Strategies for Complex Water Distribution Network
    typeJournal Article
    journal volume148
    journal issue12
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0001622
    journal fristpage04022064
    journal lastpage04022064_11
    page11
    treeJournal of Water Resources Planning and Management:;2022:;Volume ( 148 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian