YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Filter Banks and Hybrid Deep Learning Architectures for Performance-Based Seismic Assessments of Bridges

    Source: Journal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 012::page 04022196
    Author:
    Seyedomid Sajedi
    ,
    Xiao Liang
    DOI: 10.1061/(ASCE)ST.1943-541X.0003501
    Publisher: ASCE
    Abstract: The existing machine learning (ML) models for vibration-based damage assessments often use highly compressed features or are restricted to preprocessed signals with fixed durations and sampling rates. Additionally, the learning capacities of ML models and computational resources are limited, which restricts using raw signals as direct input. This paper studied Mel filter banks (MFBs) for seismic signal processing, inspired by speech recognition technology. It is argued that the same filter designs in audio engineering may not be appropriate for seismic records, and therefore, a customized filter bank formulation was developed. Hybrid deep learning models for rapid assessments (HyDRA) were introduced as multibranch neural network architectures that enable end-to-end training for different types of processed vibration data structures. Moreover, the performance-based earthquake engineering (PBEE) equation was adjusted to integrate ML model uncertainties for probabilistic assessments. The proposed concepts were validated in a case study based on a data set of 32,400 nonlinear time-history analyses of a highway bridge in California. Insights and guidelines are provided for optimum filter design based on 5,184 experiments. Several HyDRA architectures were compared with benchmark models. The optimized MFB feature type outperformed features obtained from continuous wavelet transform and a stacked vector of conventional earthquake engineering indexes. A Bayesian variant of HyDRA was investigated to showcase its integration in the modified PBEE equation. Adopting custom filter banks with the HyDRA architecture enables effective feature extraction from raw vibration records by diversifying feature space and preserving information in the time and frequency domains.
    • Download: (2.324Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Filter Banks and Hybrid Deep Learning Architectures for Performance-Based Seismic Assessments of Bridges

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289409
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorSeyedomid Sajedi
    contributor authorXiao Liang
    date accessioned2023-04-07T00:37:16Z
    date available2023-04-07T00:37:16Z
    date issued2022/12/01
    identifier other%28ASCE%29ST.1943-541X.0003501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289409
    description abstractThe existing machine learning (ML) models for vibration-based damage assessments often use highly compressed features or are restricted to preprocessed signals with fixed durations and sampling rates. Additionally, the learning capacities of ML models and computational resources are limited, which restricts using raw signals as direct input. This paper studied Mel filter banks (MFBs) for seismic signal processing, inspired by speech recognition technology. It is argued that the same filter designs in audio engineering may not be appropriate for seismic records, and therefore, a customized filter bank formulation was developed. Hybrid deep learning models for rapid assessments (HyDRA) were introduced as multibranch neural network architectures that enable end-to-end training for different types of processed vibration data structures. Moreover, the performance-based earthquake engineering (PBEE) equation was adjusted to integrate ML model uncertainties for probabilistic assessments. The proposed concepts were validated in a case study based on a data set of 32,400 nonlinear time-history analyses of a highway bridge in California. Insights and guidelines are provided for optimum filter design based on 5,184 experiments. Several HyDRA architectures were compared with benchmark models. The optimized MFB feature type outperformed features obtained from continuous wavelet transform and a stacked vector of conventional earthquake engineering indexes. A Bayesian variant of HyDRA was investigated to showcase its integration in the modified PBEE equation. Adopting custom filter banks with the HyDRA architecture enables effective feature extraction from raw vibration records by diversifying feature space and preserving information in the time and frequency domains.
    publisherASCE
    titleFilter Banks and Hybrid Deep Learning Architectures for Performance-Based Seismic Assessments of Bridges
    typeJournal Article
    journal volume148
    journal issue12
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003501
    journal fristpage04022196
    journal lastpage04022196_15
    page15
    treeJournal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian