YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study on Composite Beam with Various Connections under Midspan Impact Scenarios

    Source: Journal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 010::page 04022158
    Author:
    Bo Yang
    ,
    Kang Chen
    ,
    Da-Ming Wang
    ,
    Mohamed Elchalakani
    DOI: 10.1061/(ASCE)ST.1943-541X.0003470
    Publisher: ASCE
    Abstract: The performance of an immediate frame span subjected to a falling-debris-impact scenario is of great importance to investigate the spread of initial damage during a progressive collapse event. If the frame span was not able to resist the impact load from possible falling debris, it would become new debris and impact the lower floor with previous debris. After that, progressive collapse might probably happen. However, the impact mechanism considering the contribution of composite slabs of an immediate span remained unclear currently. Therefore, experimental studies on a series of three half-scale composite beam subassemblies were conducted under impact scenarios. The impact loads were applied via a high-performance drop-weight test machine. Various beam–column connections, including welded unreinforced flange-bolted web, fin plate, and reverse channel connections, which represented rigid connection, hinge connection, and semirigid connection, respectively, were investigated. The structural resistances of the specimens were provided by flexural action, compression arch action, and catenary action. Among them, the contribution of compressive arch action was limited and can be ignored. Flexural action always provided the most structural resistance contribution in the whole impact process, and catenary action provided structural resistance under large deformation. The specimen structural resistance increased with increasing deformation before the failure of connections. Good flexural resistance and deformation capacity were the key factors for structures to resist impact load. The reversed channel specimen had the best impact resistance.
    • Download: (6.460Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study on Composite Beam with Various Connections under Midspan Impact Scenarios

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289392
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorBo Yang
    contributor authorKang Chen
    contributor authorDa-Ming Wang
    contributor authorMohamed Elchalakani
    date accessioned2023-04-07T00:36:48Z
    date available2023-04-07T00:36:48Z
    date issued2022/10/01
    identifier other%28ASCE%29ST.1943-541X.0003470.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289392
    description abstractThe performance of an immediate frame span subjected to a falling-debris-impact scenario is of great importance to investigate the spread of initial damage during a progressive collapse event. If the frame span was not able to resist the impact load from possible falling debris, it would become new debris and impact the lower floor with previous debris. After that, progressive collapse might probably happen. However, the impact mechanism considering the contribution of composite slabs of an immediate span remained unclear currently. Therefore, experimental studies on a series of three half-scale composite beam subassemblies were conducted under impact scenarios. The impact loads were applied via a high-performance drop-weight test machine. Various beam–column connections, including welded unreinforced flange-bolted web, fin plate, and reverse channel connections, which represented rigid connection, hinge connection, and semirigid connection, respectively, were investigated. The structural resistances of the specimens were provided by flexural action, compression arch action, and catenary action. Among them, the contribution of compressive arch action was limited and can be ignored. Flexural action always provided the most structural resistance contribution in the whole impact process, and catenary action provided structural resistance under large deformation. The specimen structural resistance increased with increasing deformation before the failure of connections. Good flexural resistance and deformation capacity were the key factors for structures to resist impact load. The reversed channel specimen had the best impact resistance.
    publisherASCE
    titleExperimental Study on Composite Beam with Various Connections under Midspan Impact Scenarios
    typeJournal Article
    journal volume148
    journal issue10
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003470
    journal fristpage04022158
    journal lastpage04022158_16
    page16
    treeJournal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian