YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Lateral Torsional Buckling Response of Compact I-Shaped Welded Steel Girders

    Source: Journal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 010::page 04022149
    Author:
    Xiao Lin “Dimple” Ji
    ,
    Sheldon C. Twizell
    ,
    Robert G. Driver
    ,
    Ali Imanpour
    DOI: 10.1061/(ASCE)ST.1943-541X.0003431
    Publisher: ASCE
    Abstract: Recent studies investigating lateral torsional buckling suggest that North American steel design provisions may overestimate the bending resistance of welded girders that buckle laterally in the inelastic range. Furthermore, these provisions do not distinguish between rolled and welded members, but welded girders are widely suspected of possessing unfavorable residual stress distributions that may cause them to be more susceptible to lateral torsional buckling than their rolled counterparts. However, lack of sufficient supporting experimental test data may render existing analytically based assessments of the design equations inadequate. To address the paucity of physical testing, an experimental program was developed to determine the lateral torsional buckling resistance of full-scale I-shaped welded three-plate steel girders fabricated with current shop processes. This paper describes the development of the test program and a unique girder-stability test bed. Test results for seven girders, including measured initial geometric imperfections, load–displacement responses, and moment capacities, are then presented. A finite-element model of the test specimens, validated against the test data, is finally used to investigate the adequacy of the beam design provisions specified in the Canadian and US steel design standards. The results confirm that the current design equations can accurately predict the moment resistance of compact welded steel girders that fail in either the elastic or inelastic lateral torsional buckling mode.
    • Download: (2.606Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Lateral Torsional Buckling Response of Compact I-Shaped Welded Steel Girders

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289376
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorXiao Lin “Dimple” Ji
    contributor authorSheldon C. Twizell
    contributor authorRobert G. Driver
    contributor authorAli Imanpour
    date accessioned2023-04-07T00:36:23Z
    date available2023-04-07T00:36:23Z
    date issued2022/10/01
    identifier other%28ASCE%29ST.1943-541X.0003431.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289376
    description abstractRecent studies investigating lateral torsional buckling suggest that North American steel design provisions may overestimate the bending resistance of welded girders that buckle laterally in the inelastic range. Furthermore, these provisions do not distinguish between rolled and welded members, but welded girders are widely suspected of possessing unfavorable residual stress distributions that may cause them to be more susceptible to lateral torsional buckling than their rolled counterparts. However, lack of sufficient supporting experimental test data may render existing analytically based assessments of the design equations inadequate. To address the paucity of physical testing, an experimental program was developed to determine the lateral torsional buckling resistance of full-scale I-shaped welded three-plate steel girders fabricated with current shop processes. This paper describes the development of the test program and a unique girder-stability test bed. Test results for seven girders, including measured initial geometric imperfections, load–displacement responses, and moment capacities, are then presented. A finite-element model of the test specimens, validated against the test data, is finally used to investigate the adequacy of the beam design provisions specified in the Canadian and US steel design standards. The results confirm that the current design equations can accurately predict the moment resistance of compact welded steel girders that fail in either the elastic or inelastic lateral torsional buckling mode.
    publisherASCE
    titleLateral Torsional Buckling Response of Compact I-Shaped Welded Steel Girders
    typeJournal Article
    journal volume148
    journal issue10
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003431
    journal fristpage04022149
    journal lastpage04022149_13
    page13
    treeJournal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian