YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Rheological Properties and Mechanism of Asphalt Modified with Polypropylene and Graphene and Carbon Black Composites

    Source: Journal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 012::page 04022343
    Author:
    Jingwen Liu
    ,
    Peiwen Hao
    ,
    Bowei Sun
    ,
    Yan Li
    ,
    Yongdan Wang
    DOI: 10.1061/(ASCE)MT.1943-5533.0004513
    Publisher: ASCE
    Abstract: The application of polypropylene (PP) to asphalt pavement construction, as one of the measures to dispose white waste, has suffered from many challenges. Meanwhile, the emerging nanomaterials for asphalt pavements has exhibited great potential and drawn the attention of many researchers. Therefore, in this study, the novel graphene/carbon black nanocomposite (GC) was selected to improve this dilemma by compounding with PP in different approaches. First, three kinds of asphalt binders incorporated with PP and GC were prepared by mechanical mixing. Subsequently, the temperature sweep, frequency sweep, multiple stress creep recovery (MSCR), and linear amplitude sweep (LAS) have been performed to evaluate the rheological properties of PP/GC composite-modified asphalt binders. In addition, the low-temperature tensile fracture behaviors of the different modified asphalt were investigated through the force-ductility testing machine (FDTM). Moreover, the microstructure and chemical composition of the different modified asphalt binders were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The experimental results confirmed that PP and GC synergistically increased the mechanical strength and high-temperature rutting resistance of the asphalt binder. As a result, the incorporation of GC significantly improved the stress sensitivity of the PP/CG composite-modified asphalt under repeated loading. Wherein, the polypropylene/GC masterbatch (PGC) modified asphalt, prepared by premixing process, exhibited superior fatigue-damage tolerance and low-temperature cracking resistance. SEM and FT-IR data revealed that the addition of GC facilitated the formation of a strong network structure of PP in the asphalt matrix by physical coblending. This study may cast some light on the application of PP and GC for asphalt modification.
    • Download: (6.758Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Rheological Properties and Mechanism of Asphalt Modified with Polypropylene and Graphene and Carbon Black Composites

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289339
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorJingwen Liu
    contributor authorPeiwen Hao
    contributor authorBowei Sun
    contributor authorYan Li
    contributor authorYongdan Wang
    date accessioned2023-04-07T00:35:19Z
    date available2023-04-07T00:35:19Z
    date issued2022/12/01
    identifier other%28ASCE%29MT.1943-5533.0004513.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289339
    description abstractThe application of polypropylene (PP) to asphalt pavement construction, as one of the measures to dispose white waste, has suffered from many challenges. Meanwhile, the emerging nanomaterials for asphalt pavements has exhibited great potential and drawn the attention of many researchers. Therefore, in this study, the novel graphene/carbon black nanocomposite (GC) was selected to improve this dilemma by compounding with PP in different approaches. First, three kinds of asphalt binders incorporated with PP and GC were prepared by mechanical mixing. Subsequently, the temperature sweep, frequency sweep, multiple stress creep recovery (MSCR), and linear amplitude sweep (LAS) have been performed to evaluate the rheological properties of PP/GC composite-modified asphalt binders. In addition, the low-temperature tensile fracture behaviors of the different modified asphalt were investigated through the force-ductility testing machine (FDTM). Moreover, the microstructure and chemical composition of the different modified asphalt binders were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The experimental results confirmed that PP and GC synergistically increased the mechanical strength and high-temperature rutting resistance of the asphalt binder. As a result, the incorporation of GC significantly improved the stress sensitivity of the PP/CG composite-modified asphalt under repeated loading. Wherein, the polypropylene/GC masterbatch (PGC) modified asphalt, prepared by premixing process, exhibited superior fatigue-damage tolerance and low-temperature cracking resistance. SEM and FT-IR data revealed that the addition of GC facilitated the formation of a strong network structure of PP in the asphalt matrix by physical coblending. This study may cast some light on the application of PP and GC for asphalt modification.
    publisherASCE
    titleRheological Properties and Mechanism of Asphalt Modified with Polypropylene and Graphene and Carbon Black Composites
    typeJournal Article
    journal volume34
    journal issue12
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004513
    journal fristpage04022343
    journal lastpage04022343_16
    page16
    treeJournal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian