YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Calibration of a Cyclic Cohesive-Zone Model for Fatigue-Crack Propagation in CFRP-Strengthened Steel Plates

    Source: Journal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 005::page 04022054
    Author:
    Mana Mohajer
    ,
    Massimiliano Bocciarelli
    ,
    Pierluigi Colombi
    DOI: 10.1061/(ASCE)CC.1943-5614.0001243
    Publisher: ASCE
    Abstract: Various carbon fiber–reinforced polymer (CFRP) strengthening systems have been developed to increase the fatigue lifetime of existing aging steel structures. According to the literature, the results of fatigue tests on CFRP-strengthened steel plates showed a significant increase in the fatigue lifetime of the specimens, compared with the bare ones. In particular, the fatigue lifetime extension was more pronounced for short initial crack sizes (i.e., low initial damage level). In this study, the fatigue-crack growth curves in bonded CFRP-strengthened single edge notched tension (SENT) specimens were numerically investigated. The proposed numerical approach adopted a cyclic cohesive-zone model (CCZM), which enabled the simulation of crack growth in steel plates, through the definition of a scalar damage variable (k). The selected model contained some parameters that did not possess a precise physical meaning and therefore were not amenable to direct measurement. Therefore, a robust identification procedure was proposed to calibrate the model parameters that governed fatigue behavior, which was based on the response of unstrengthened specimens in the crack propagation curves. The successful identification was then validated by comparison with the measured response of the strengthened SENT specimens, which were modeled by adopting the same identified model parameters. The adhesive between the CFRP laminate and steel substrate was simulated by defining an elasto–brittle surface-to-surface contact model, whose properties were selected based on well known approaches that were proposed in the literature.
    • Download: (999.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Calibration of a Cyclic Cohesive-Zone Model for Fatigue-Crack Propagation in CFRP-Strengthened Steel Plates

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289334
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorMana Mohajer
    contributor authorMassimiliano Bocciarelli
    contributor authorPierluigi Colombi
    date accessioned2023-04-07T00:35:12Z
    date available2023-04-07T00:35:12Z
    date issued2022/10/01
    identifier other%28ASCE%29CC.1943-5614.0001243.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289334
    description abstractVarious carbon fiber–reinforced polymer (CFRP) strengthening systems have been developed to increase the fatigue lifetime of existing aging steel structures. According to the literature, the results of fatigue tests on CFRP-strengthened steel plates showed a significant increase in the fatigue lifetime of the specimens, compared with the bare ones. In particular, the fatigue lifetime extension was more pronounced for short initial crack sizes (i.e., low initial damage level). In this study, the fatigue-crack growth curves in bonded CFRP-strengthened single edge notched tension (SENT) specimens were numerically investigated. The proposed numerical approach adopted a cyclic cohesive-zone model (CCZM), which enabled the simulation of crack growth in steel plates, through the definition of a scalar damage variable (k). The selected model contained some parameters that did not possess a precise physical meaning and therefore were not amenable to direct measurement. Therefore, a robust identification procedure was proposed to calibrate the model parameters that governed fatigue behavior, which was based on the response of unstrengthened specimens in the crack propagation curves. The successful identification was then validated by comparison with the measured response of the strengthened SENT specimens, which were modeled by adopting the same identified model parameters. The adhesive between the CFRP laminate and steel substrate was simulated by defining an elasto–brittle surface-to-surface contact model, whose properties were selected based on well known approaches that were proposed in the literature.
    publisherASCE
    titleCalibration of a Cyclic Cohesive-Zone Model for Fatigue-Crack Propagation in CFRP-Strengthened Steel Plates
    typeJournal Article
    journal volume26
    journal issue5
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001243
    journal fristpage04022054
    journal lastpage04022054_9
    page9
    treeJournal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian