YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Study on Chemical Composition, Colloidal Stability, and Rheological Properties of Ethylene Vinyl Acetate–Modified Binders

    Source: Journal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 012::page 04022353
    Author:
    Anil Kumar Baditha
    ,
    Amaranatha Reddy Muppireddy
    ,
    Sudhakar Reddy Kusam
    DOI: 10.1061/(ASCE)MT.1943-5533.0004505
    Publisher: ASCE
    Abstract: The rheological properties and performance of binders are often explained using the chemical composition of binders. The present study explored the effect of SARA fractions (saturates, aromatics, resins, and asphaltenes) and colloidal stability on the rheological properties of ethylene vinyl acetate (EVA) modified binders. The effect of short-term and long-term aging on SARA fractions and colloidal stability of EVA-modified binders was also examined. The base bitumen (VG40) was modified with EVA-18 polymer (1% to 7%, varied with an increment of 1%) to produce EVA polymer-modified binders. Penetration, softening point, elastic recovery, complex shear modulus (G*), phase angle (δ), Superpave rutting parameter (G*/sinδ), temperature and frequency sensitivities of the Superpave rutting parameter, and multiple stress creep and recovery (MSCR) test parameters of the binders were determined and correlated with the polar components (resins and asphaltenes) of EVA-modified binders. The elastic recovery, percent recovery measured in the MSCR test, temperature and frequency sensitivities of Superpave rutting parameter, and fatigue lives of binders estimated from the linear amplitude sweep (LAS) test were correlated with the colloidal stability index of binders. The temperature and frequency sensitivity of the binders decreased with EVA polymer modification. Colloidal stability of bitumen increased with increased content of the EVA polymer modifier in base binder VG40. The effect of aging demonstrated a decrease in the colloidal stability of bitumen. The polar fractions (resins and asphaltenes) of binders were found to correlate well with (1) different consistency/stiffness parameters such as penetration, softening point, and complex modulus (G*); (2) elastic response represented by elastic recovery, phase angle, and percent recovery measured in the MSCR test; (3) permanent deformation (rutting) resistance measured by G*/sinδ and nonrecoverable creep compliance (Jnr) measured in the MSCR test; and (4) temperature and frequency sensitivities of Superpave rutting parameter. The correlations obtained for resins are observed to be better than those developed with asphaltenes. Colloidal stability index is found to correlate well with elastic recovery, percent recovery measured in the MSCR test, temperature and frequency sensitivities of the Superpave rutting parameter, and fatigue lives of binders estimated from the LAS test.
    • Download: (3.641Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Study on Chemical Composition, Colloidal Stability, and Rheological Properties of Ethylene Vinyl Acetate–Modified Binders

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289330
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorAnil Kumar Baditha
    contributor authorAmaranatha Reddy Muppireddy
    contributor authorSudhakar Reddy Kusam
    date accessioned2023-04-07T00:35:05Z
    date available2023-04-07T00:35:05Z
    date issued2022/12/01
    identifier other%28ASCE%29MT.1943-5533.0004505.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289330
    description abstractThe rheological properties and performance of binders are often explained using the chemical composition of binders. The present study explored the effect of SARA fractions (saturates, aromatics, resins, and asphaltenes) and colloidal stability on the rheological properties of ethylene vinyl acetate (EVA) modified binders. The effect of short-term and long-term aging on SARA fractions and colloidal stability of EVA-modified binders was also examined. The base bitumen (VG40) was modified with EVA-18 polymer (1% to 7%, varied with an increment of 1%) to produce EVA polymer-modified binders. Penetration, softening point, elastic recovery, complex shear modulus (G*), phase angle (δ), Superpave rutting parameter (G*/sinδ), temperature and frequency sensitivities of the Superpave rutting parameter, and multiple stress creep and recovery (MSCR) test parameters of the binders were determined and correlated with the polar components (resins and asphaltenes) of EVA-modified binders. The elastic recovery, percent recovery measured in the MSCR test, temperature and frequency sensitivities of Superpave rutting parameter, and fatigue lives of binders estimated from the linear amplitude sweep (LAS) test were correlated with the colloidal stability index of binders. The temperature and frequency sensitivity of the binders decreased with EVA polymer modification. Colloidal stability of bitumen increased with increased content of the EVA polymer modifier in base binder VG40. The effect of aging demonstrated a decrease in the colloidal stability of bitumen. The polar fractions (resins and asphaltenes) of binders were found to correlate well with (1) different consistency/stiffness parameters such as penetration, softening point, and complex modulus (G*); (2) elastic response represented by elastic recovery, phase angle, and percent recovery measured in the MSCR test; (3) permanent deformation (rutting) resistance measured by G*/sinδ and nonrecoverable creep compliance (Jnr) measured in the MSCR test; and (4) temperature and frequency sensitivities of Superpave rutting parameter. The correlations obtained for resins are observed to be better than those developed with asphaltenes. Colloidal stability index is found to correlate well with elastic recovery, percent recovery measured in the MSCR test, temperature and frequency sensitivities of the Superpave rutting parameter, and fatigue lives of binders estimated from the LAS test.
    publisherASCE
    titleA Study on Chemical Composition, Colloidal Stability, and Rheological Properties of Ethylene Vinyl Acetate–Modified Binders
    typeJournal Article
    journal volume34
    journal issue12
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004505
    journal fristpage04022353
    journal lastpage04022353_13
    page13
    treeJournal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian