YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Chloride Transport in Interfacial Zone of New–Old Concrete Joints of Precast Prestressed Concrete Bridges under Fatigue Load

    Source: Journal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 010::page 04022263
    Author:
    Jie Zhao
    ,
    Fumin Li
    DOI: 10.1061/(ASCE)MT.1943-5533.0004412
    Publisher: ASCE
    Abstract: The interfacial zone of new–old concrete in precast concrete structure is the natural weak part in durability, and fatigue stress and an aggressive medium will accelerate the durability degradation of the interfacial zone. To study the chloride transport behavior in the interfacial zone of new–old concrete joints of precast prestressed bridges under the combined action of fatigue load and chloride penetration, a set of long-term (90–360 days) and low-frequency (0.3 Hz) experiments was carried out in this paper, where three fatigue stress ranges and four exposure durations were set as the main variables. The results indicated that the chloride content in the interfacial zone is higher than that present elsewhere, which shows the interfacial zone effect (IZE). By introducing the index of IZE, the influence laws of fatigue stress range and exposure duration on the IZE are revealed, namely as the fatigue stress range increases, the IZE first increases and then decreases, and as the exposure duration increases, the IZE decreases invariably. Moreover, the influence mechanism of fatigue stress range and exposure duration on the distribution and evolution of chloride concentration in the interfacial zone is analyzed. Considering the heterogeneous distribution of mesocomposition and internal defects (pores) in the interfacial zone of new–old concrete, the model of the chloride diffusion coefficient is established. Based on the relationship between volume strain and porosity, and the relationship between strain and specific crack area, a revised model of the effective chloride diffusion coefficient in the interfacial zone under fatigue stress is proposed. The accuracy of the revised model was verified by physical experiments.
    • Download: (6.716Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Chloride Transport in Interfacial Zone of New–Old Concrete Joints of Precast Prestressed Concrete Bridges under Fatigue Load

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289287
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorJie Zhao
    contributor authorFumin Li
    date accessioned2023-04-07T00:33:56Z
    date available2023-04-07T00:33:56Z
    date issued2022/10/01
    identifier other%28ASCE%29MT.1943-5533.0004412.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289287
    description abstractThe interfacial zone of new–old concrete in precast concrete structure is the natural weak part in durability, and fatigue stress and an aggressive medium will accelerate the durability degradation of the interfacial zone. To study the chloride transport behavior in the interfacial zone of new–old concrete joints of precast prestressed bridges under the combined action of fatigue load and chloride penetration, a set of long-term (90–360 days) and low-frequency (0.3 Hz) experiments was carried out in this paper, where three fatigue stress ranges and four exposure durations were set as the main variables. The results indicated that the chloride content in the interfacial zone is higher than that present elsewhere, which shows the interfacial zone effect (IZE). By introducing the index of IZE, the influence laws of fatigue stress range and exposure duration on the IZE are revealed, namely as the fatigue stress range increases, the IZE first increases and then decreases, and as the exposure duration increases, the IZE decreases invariably. Moreover, the influence mechanism of fatigue stress range and exposure duration on the distribution and evolution of chloride concentration in the interfacial zone is analyzed. Considering the heterogeneous distribution of mesocomposition and internal defects (pores) in the interfacial zone of new–old concrete, the model of the chloride diffusion coefficient is established. Based on the relationship between volume strain and porosity, and the relationship between strain and specific crack area, a revised model of the effective chloride diffusion coefficient in the interfacial zone under fatigue stress is proposed. The accuracy of the revised model was verified by physical experiments.
    publisherASCE
    titleChloride Transport in Interfacial Zone of New–Old Concrete Joints of Precast Prestressed Concrete Bridges under Fatigue Load
    typeJournal Article
    journal volume34
    journal issue10
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004412
    journal fristpage04022263
    journal lastpage04022263_20
    page20
    treeJournal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian