YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Infrastructure Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Infrastructure Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Image Processing–Based Framework for Determining Deterioration in Sewer Pipe Defects

    Source: Journal of Infrastructure Systems:;2022:;Volume ( 028 ):;issue: 004::page 04022030
    Author:
    Mohamed Karabij
    ,
    Xianfei Yin
    ,
    Ahmed Bouferguene
    ,
    Mohamed Al-Hussein
    DOI: 10.1061/(ASCE)IS.1943-555X.0000713
    Publisher: ASCE
    Abstract: Municipal drainage systems play a key role in public health and are considered one of the main components of every modern city’s infrastructure. However, as a drainage system ages, its pipes gradually deteriorate at rates that vary based on the conditions of utilization. To prevent unexpected failures, municipalities have adopted a proactive approach that relies on regular condition assessments of their assets. At this juncture, a question that needs to be answered is how these assessment data can be used to optimize the frequency of inspections of the drainage pipes. In fact, when the assessment information is used in conjunction with deterioration models, city managers are able to develop data-driven maintenance, rehabilitation, and replacement plans based on the current condition of the assets and their risk of failure. As a result, understanding the rate at which defects evolve over time provides valuable information in terms of understanding the relationship between the various factors affecting defect development and pipe deterioration. This research presents an image registration framework for extracting crack development information from closed-circuit television (CCTV) videos of sewer pipes. Image processing techniques are used to estimate the relative change for a given defect from images taken at two different times. Because the parameters of cameras (e.g., model, location, angle of view) are generally not expected to be identical for consecutive inspection campaigns, the images to be compared were first scaled using a technique referred to as the area scaler (AS) to ensure all images have the same frame of reference. This scaling procedure is illustrated in a case study, containing 49 pairs of images that led to a relative error (with respect to the mean) generally not exceeding 5% when frames of the same defects contained a sufficient number of matching points.
    • Download: (2.710Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Image Processing–Based Framework for Determining Deterioration in Sewer Pipe Defects

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289264
    Collections
    • Journal of Infrastructure Systems

    Show full item record

    contributor authorMohamed Karabij
    contributor authorXianfei Yin
    contributor authorAhmed Bouferguene
    contributor authorMohamed Al-Hussein
    date accessioned2023-04-07T00:33:08Z
    date available2023-04-07T00:33:08Z
    date issued2022/12/01
    identifier other%28ASCE%29IS.1943-555X.0000713.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289264
    description abstractMunicipal drainage systems play a key role in public health and are considered one of the main components of every modern city’s infrastructure. However, as a drainage system ages, its pipes gradually deteriorate at rates that vary based on the conditions of utilization. To prevent unexpected failures, municipalities have adopted a proactive approach that relies on regular condition assessments of their assets. At this juncture, a question that needs to be answered is how these assessment data can be used to optimize the frequency of inspections of the drainage pipes. In fact, when the assessment information is used in conjunction with deterioration models, city managers are able to develop data-driven maintenance, rehabilitation, and replacement plans based on the current condition of the assets and their risk of failure. As a result, understanding the rate at which defects evolve over time provides valuable information in terms of understanding the relationship between the various factors affecting defect development and pipe deterioration. This research presents an image registration framework for extracting crack development information from closed-circuit television (CCTV) videos of sewer pipes. Image processing techniques are used to estimate the relative change for a given defect from images taken at two different times. Because the parameters of cameras (e.g., model, location, angle of view) are generally not expected to be identical for consecutive inspection campaigns, the images to be compared were first scaled using a technique referred to as the area scaler (AS) to ensure all images have the same frame of reference. This scaling procedure is illustrated in a case study, containing 49 pairs of images that led to a relative error (with respect to the mean) generally not exceeding 5% when frames of the same defects contained a sufficient number of matching points.
    publisherASCE
    titleImage Processing–Based Framework for Determining Deterioration in Sewer Pipe Defects
    typeJournal Article
    journal volume28
    journal issue4
    journal titleJournal of Infrastructure Systems
    identifier doi10.1061/(ASCE)IS.1943-555X.0000713
    journal fristpage04022030
    journal lastpage04022030_14
    page14
    treeJournal of Infrastructure Systems:;2022:;Volume ( 028 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian