YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Caisson-Bored Pile Composite Anchorage Foundation for Long-Span Suspension Bridge: Feasibility Study and Parametric Analysis

    Source: Journal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 012::page 04022117
    Author:
    Xiaoqing Zhao
    ,
    Xiaonan Gong
    ,
    Panpan Guo
    DOI: 10.1061/(ASCE)BE.1943-5592.0001969
    Publisher: ASCE
    Abstract: This paper proposes a novel form of gravity foundation for long-span suspension bridges. The foundation combines a caisson with bored piles and thereafter is termed a caisson-bored pile composite anchorage (CBPCA) foundation. Based on a typical suspension bridge case study with traditional caisson foundation, the feasibility of the proposed foundation was evaluated. To further capture the performance of the CBPCA foundation, three-dimensional (3D) finite-element analyses were performed. The 3D finite-element method (FEM) was validated by comparing the simulated horizontal displacements of a nine-pile group with the reported field monitoring data. Parametric studies were also conducted to investigate the effects of various parameters associated with bored piles on the CBPCA foundation performance. The numerical analysis results indicate that increasing the pile diameter can significantly reduce the horizontal displacements of the theoretical joint point (TJP) and the structural forces of bored piles. In addition, the effect of the pile arrangement was also studied. The feasibility of reducing construction time and costs by adjusting the length of some bored piles was also discussed. Moreover, the soil strength has a great influence on the stability of the CBPCA foundation, implying that it may be not suitable for soft soil conditions, namely, a soil strength ratio smaller than 0.4 in this study.
    • Download: (3.450Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Caisson-Bored Pile Composite Anchorage Foundation for Long-Span Suspension Bridge: Feasibility Study and Parametric Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289256
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorXiaoqing Zhao
    contributor authorXiaonan Gong
    contributor authorPanpan Guo
    date accessioned2023-04-07T00:32:56Z
    date available2023-04-07T00:32:56Z
    date issued2022/12/01
    identifier other%28ASCE%29BE.1943-5592.0001969.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289256
    description abstractThis paper proposes a novel form of gravity foundation for long-span suspension bridges. The foundation combines a caisson with bored piles and thereafter is termed a caisson-bored pile composite anchorage (CBPCA) foundation. Based on a typical suspension bridge case study with traditional caisson foundation, the feasibility of the proposed foundation was evaluated. To further capture the performance of the CBPCA foundation, three-dimensional (3D) finite-element analyses were performed. The 3D finite-element method (FEM) was validated by comparing the simulated horizontal displacements of a nine-pile group with the reported field monitoring data. Parametric studies were also conducted to investigate the effects of various parameters associated with bored piles on the CBPCA foundation performance. The numerical analysis results indicate that increasing the pile diameter can significantly reduce the horizontal displacements of the theoretical joint point (TJP) and the structural forces of bored piles. In addition, the effect of the pile arrangement was also studied. The feasibility of reducing construction time and costs by adjusting the length of some bored piles was also discussed. Moreover, the soil strength has a great influence on the stability of the CBPCA foundation, implying that it may be not suitable for soft soil conditions, namely, a soil strength ratio smaller than 0.4 in this study.
    publisherASCE
    titleCaisson-Bored Pile Composite Anchorage Foundation for Long-Span Suspension Bridge: Feasibility Study and Parametric Analysis
    typeJournal Article
    journal volume27
    journal issue12
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001969
    journal fristpage04022117
    journal lastpage04022117_20
    page20
    treeJournal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian