YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Elastic Water Column Model for Hydraulic Transient Analysis of Pipe Networks

    Source: Journal of Hydraulic Engineering:;2022:;Volume ( 148 ):;issue: 012::page 04022027
    Author:
    Wei Zeng
    ,
    Aaron C. Zecchin
    ,
    Martin F. Lambert
    DOI: 10.1061/(ASCE)HY.1943-7900.0002028
    Publisher: ASCE
    Abstract: The transient behavior of pipe systems is typically simulated using water hammer models [such as the method of characteristics (MOC)], or rigid water column (RWC) models depending on whether the hydraulic transition is fast or gradual. In this paper, an elastic water column (EWC) model for analyzing hydraulic transients in pipe networks is formulated using a novel graph-theoretic approach. The new method of modeling a network with a state-space representation inherits the advantages of the RWC model, such as its high computational efficiency and potential to integrate with modern control theory and signal analysis algorithms. Meanwhile, the proposed method incorporates water compressibility and is therefore significantly more accurate than the standard RWC models, and is shown to be equivalent to MOC models below a critical frequency. Another advantage of the new model is its elegantly simple formulation for an arbitrarily configured pipe network. The accuracy of the model was validated numerically on 6- and 51-pipe networks. The simulated results of the 51-pipe network demonstrate that the transient pressures in a large-scale pipe network dominate in the low-frequency range where the EWC model has high accuracy. These results demonstrate the utility of the proposed method to provide a flexible solution to optimize accuracy and efficiency for simulating hydraulic transient events in pipeline networks. The EWC model has great potential to be combined with other control and signal analysis techniques because of its state-space representation of a water network.
    • Download: (1.518Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Elastic Water Column Model for Hydraulic Transient Analysis of Pipe Networks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289242
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorWei Zeng
    contributor authorAaron C. Zecchin
    contributor authorMartin F. Lambert
    date accessioned2023-04-07T00:32:28Z
    date available2023-04-07T00:32:28Z
    date issued2022/12/01
    identifier other%28ASCE%29HY.1943-7900.0002028.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289242
    description abstractThe transient behavior of pipe systems is typically simulated using water hammer models [such as the method of characteristics (MOC)], or rigid water column (RWC) models depending on whether the hydraulic transition is fast or gradual. In this paper, an elastic water column (EWC) model for analyzing hydraulic transients in pipe networks is formulated using a novel graph-theoretic approach. The new method of modeling a network with a state-space representation inherits the advantages of the RWC model, such as its high computational efficiency and potential to integrate with modern control theory and signal analysis algorithms. Meanwhile, the proposed method incorporates water compressibility and is therefore significantly more accurate than the standard RWC models, and is shown to be equivalent to MOC models below a critical frequency. Another advantage of the new model is its elegantly simple formulation for an arbitrarily configured pipe network. The accuracy of the model was validated numerically on 6- and 51-pipe networks. The simulated results of the 51-pipe network demonstrate that the transient pressures in a large-scale pipe network dominate in the low-frequency range where the EWC model has high accuracy. These results demonstrate the utility of the proposed method to provide a flexible solution to optimize accuracy and efficiency for simulating hydraulic transient events in pipeline networks. The EWC model has great potential to be combined with other control and signal analysis techniques because of its state-space representation of a water network.
    publisherASCE
    titleElastic Water Column Model for Hydraulic Transient Analysis of Pipe Networks
    typeJournal Article
    journal volume148
    journal issue12
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0002028
    journal fristpage04022027
    journal lastpage04022027_10
    page10
    treeJournal of Hydraulic Engineering:;2022:;Volume ( 148 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian