YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Large Eddy Simulation of Inclined Negatively Buoyant Jets with Sloped Beds

    Source: Journal of Hydraulic Engineering:;2022:;Volume ( 148 ):;issue: 011::page 04022023
    Author:
    S. Habibi
    ,
    A. Azadi
    ,
    B. Firoozabadi
    DOI: 10.1061/(ASCE)HY.1943-7900.0002017
    Publisher: ASCE
    Abstract: The effluents produced by reverse osmosis desalination plants are usually disposed under the surface of the sea as inclined negatively buoyant jets (INBJ), to achieve the highest mixing rate. Bed slope in the local environment is one of the contributing factors in the behavior of INBJs. The aim of the present study is to utilize large eddy simulation (LES) to study the effects of the bed slope on the dilution and spreading of INBJs with 30°, 45°, and 60° nozzle angles. In this regard, five down slopes, 0°, 5°, 10°, 15°, and 20° were considered for the bed, and the mixing and geometrical properties of INBJs were studied in both jet plume and spreading layer regions. Present simulations show that the increase in the bed slope for all the three nozzle angles favorably increases the dilution of the INBJs at return point, concentration buildup point (CBP), impact point, and on the bed. For a 20° increase in the bed slope, the relative increase in the dilution at CBP of 30°, 45°, and 60° INBJs is calculated as 167.75%, 81.13%, and 107.43%, respectively. Also, the centerline dilution is the highest for the 60° nozzle angle at each bed inclination. The distribution of the mean concentration on the bed shows that an increase in the nozzle and bed inclination results in a significant decrease in the mean concentration and the area in which the effluent alters the ambient water quality. Present results suggest that the INBJs should be discharged into the ambient water in sloped environments, and the nozzle angle of 60° is preferred to 30° and 45° regardless of the bed inclination.
    • Download: (8.714Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Large Eddy Simulation of Inclined Negatively Buoyant Jets with Sloped Beds

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289235
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorS. Habibi
    contributor authorA. Azadi
    contributor authorB. Firoozabadi
    date accessioned2023-04-07T00:32:17Z
    date available2023-04-07T00:32:17Z
    date issued2022/11/01
    identifier other%28ASCE%29HY.1943-7900.0002017.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289235
    description abstractThe effluents produced by reverse osmosis desalination plants are usually disposed under the surface of the sea as inclined negatively buoyant jets (INBJ), to achieve the highest mixing rate. Bed slope in the local environment is one of the contributing factors in the behavior of INBJs. The aim of the present study is to utilize large eddy simulation (LES) to study the effects of the bed slope on the dilution and spreading of INBJs with 30°, 45°, and 60° nozzle angles. In this regard, five down slopes, 0°, 5°, 10°, 15°, and 20° were considered for the bed, and the mixing and geometrical properties of INBJs were studied in both jet plume and spreading layer regions. Present simulations show that the increase in the bed slope for all the three nozzle angles favorably increases the dilution of the INBJs at return point, concentration buildup point (CBP), impact point, and on the bed. For a 20° increase in the bed slope, the relative increase in the dilution at CBP of 30°, 45°, and 60° INBJs is calculated as 167.75%, 81.13%, and 107.43%, respectively. Also, the centerline dilution is the highest for the 60° nozzle angle at each bed inclination. The distribution of the mean concentration on the bed shows that an increase in the nozzle and bed inclination results in a significant decrease in the mean concentration and the area in which the effluent alters the ambient water quality. Present results suggest that the INBJs should be discharged into the ambient water in sloped environments, and the nozzle angle of 60° is preferred to 30° and 45° regardless of the bed inclination.
    publisherASCE
    titleLarge Eddy Simulation of Inclined Negatively Buoyant Jets with Sloped Beds
    typeJournal Article
    journal volume148
    journal issue11
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0002017
    journal fristpage04022023
    journal lastpage04022023_13
    page13
    treeJournal of Hydraulic Engineering:;2022:;Volume ( 148 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian