YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Quasi-Static Cyclic Testing of Hybrid Posttensioned Bridge Column Supported on a Monopile Foundation

    Source: Journal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 011::page 04022111
    Author:
    Sabina Piras
    ,
    Alessandro Palermo
    ,
    Gabriele Chiaro
    DOI: 10.1061/(ASCE)BE.1943-5592.0001962
    Publisher: ASCE
    Abstract: In this research, a low-damage posttensioned rocking solution referred to as dissipative controlled rocking (DCR) connection is proposed for bridge columns supported on monopile foundations. The DCR connection is a low-damage system that replaces the plastic hinge mechanism in a column and aims to minimize and potentially eliminate the repair time and costs after an earthquake. A DCR bridge system combines unbonded posttensioning and replaceable dissipaters to provide self-centering and energy absorption capabilities, respectively. Current research on DCR column systems has focused on the performance of bridge bents founded on a fixed foundation, neglecting soil damping effects. In this research, a one-third scaled bent supported on a monopile with passive soil resistance was tested under quasi-static cyclic loading to validate the lateral seismic response of a DCR bridge bent with the contribution of the soil–foundation–structure interaction. When developing the details for the DCR connection, particular emphasis was made on utilizing conventional construction materials and forms for a low-damage bent that yields a similar construction cost to a monolithic joint. Nevertheless, the proposed DCR connection can be easily and quickly repaired or replaced after a significant seismic event. The performance of the bent was compared against a benchmark structure with an emulative connection type that resembles a monolithic cast-in-place joint. Results from testing suggest a greater performance of the low-damage DCR column. The dynamic response of the DCR column built on a flexible foundation differed from that of a fixed-base structure, which is primarily due to the energy dissipation capability of the flexibly supported structure. Flexibility in the soil foundation increased the structural period of the structure and reduced the seismic response of the DCR column. Damage to the DCR bent was limited to concrete crushing at the rocking interface, which proved to be easily repairable. In contrast, the bent with an emulative connection developed plastic hinging at the bottom of the column, which was nonrepairable.
    • Download: (3.921Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Quasi-Static Cyclic Testing of Hybrid Posttensioned Bridge Column Supported on a Monopile Foundation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289212
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorSabina Piras
    contributor authorAlessandro Palermo
    contributor authorGabriele Chiaro
    date accessioned2023-04-07T00:31:37Z
    date available2023-04-07T00:31:37Z
    date issued2022/11/01
    identifier other%28ASCE%29BE.1943-5592.0001962.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289212
    description abstractIn this research, a low-damage posttensioned rocking solution referred to as dissipative controlled rocking (DCR) connection is proposed for bridge columns supported on monopile foundations. The DCR connection is a low-damage system that replaces the plastic hinge mechanism in a column and aims to minimize and potentially eliminate the repair time and costs after an earthquake. A DCR bridge system combines unbonded posttensioning and replaceable dissipaters to provide self-centering and energy absorption capabilities, respectively. Current research on DCR column systems has focused on the performance of bridge bents founded on a fixed foundation, neglecting soil damping effects. In this research, a one-third scaled bent supported on a monopile with passive soil resistance was tested under quasi-static cyclic loading to validate the lateral seismic response of a DCR bridge bent with the contribution of the soil–foundation–structure interaction. When developing the details for the DCR connection, particular emphasis was made on utilizing conventional construction materials and forms for a low-damage bent that yields a similar construction cost to a monolithic joint. Nevertheless, the proposed DCR connection can be easily and quickly repaired or replaced after a significant seismic event. The performance of the bent was compared against a benchmark structure with an emulative connection type that resembles a monolithic cast-in-place joint. Results from testing suggest a greater performance of the low-damage DCR column. The dynamic response of the DCR column built on a flexible foundation differed from that of a fixed-base structure, which is primarily due to the energy dissipation capability of the flexibly supported structure. Flexibility in the soil foundation increased the structural period of the structure and reduced the seismic response of the DCR column. Damage to the DCR bent was limited to concrete crushing at the rocking interface, which proved to be easily repairable. In contrast, the bent with an emulative connection developed plastic hinging at the bottom of the column, which was nonrepairable.
    publisherASCE
    titleQuasi-Static Cyclic Testing of Hybrid Posttensioned Bridge Column Supported on a Monopile Foundation
    typeJournal Article
    journal volume27
    journal issue11
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001962
    journal fristpage04022111
    journal lastpage04022111_13
    page13
    treeJournal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian