YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Development of Fuzzy System Dynamics Model to Forecast Bridge Resilience

    Source: Journal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 012::page 04022114
    Author:
    V. H. Lad
    ,
    D. A. Patel
    ,
    K. A. Chauhan
    ,
    K. A. Patel
    DOI: 10.1061/(ASCE)BE.1943-5592.0001952
    Publisher: ASCE
    Abstract: The occurrence of disasters such as earthquakes, cyclones, tsunamis, and floods affect the resilience of bridges. In the last four decades, about 2,130 bridges were collapsed due to various disasters in India, and out of these, almost 1,105 bridges were ruined due to floods. However, in the existing practice of measuring the resilience of bridges, resilience matrices overlook the dynamism of bridge resilience and fail to address the uncertainty of variables influencing the resilience of bridges due to floods. Therefore, this study aims to develop the fuzzy system dynamics (FSD) model to simulate and forecast bridge resilience considering complex interconnections among different infrastructures and government systems. For this, the study first shortlists 14 variables related to bridge resilience using the Delphi method. Then, the cause-and-effect feedback loop and stock-and-flow diagram are formulated to explore the interdependency among these system dynamics variables of bridge resilience. Fuzzy measures and integral are used to establish the soft relationships and the existing mathematical formulas to explain the hard relationships in the FSD model. The proposed FSD model is used to simulate and forecast scenarios of the resilience of 12 bridges against floods. The structure and behavior of the FSD model are validated by conducting the dimension consistency test, structure verification test, and sensitivity analysis. The proposed model can be helpful to bridge owners to manage bridge assets, prioritize the repair and rehabilitation of bridges, propose the new bridges, devise the new policy, coordinate with other utilities and governance agencies, and thus enhance the bridge’s resilience against floods.
    • Download: (1.259Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Development of Fuzzy System Dynamics Model to Forecast Bridge Resilience

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289145
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorV. H. Lad
    contributor authorD. A. Patel
    contributor authorK. A. Chauhan
    contributor authorK. A. Patel
    date accessioned2023-04-07T00:29:52Z
    date available2023-04-07T00:29:52Z
    date issued2022/12/01
    identifier other%28ASCE%29BE.1943-5592.0001952.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289145
    description abstractThe occurrence of disasters such as earthquakes, cyclones, tsunamis, and floods affect the resilience of bridges. In the last four decades, about 2,130 bridges were collapsed due to various disasters in India, and out of these, almost 1,105 bridges were ruined due to floods. However, in the existing practice of measuring the resilience of bridges, resilience matrices overlook the dynamism of bridge resilience and fail to address the uncertainty of variables influencing the resilience of bridges due to floods. Therefore, this study aims to develop the fuzzy system dynamics (FSD) model to simulate and forecast bridge resilience considering complex interconnections among different infrastructures and government systems. For this, the study first shortlists 14 variables related to bridge resilience using the Delphi method. Then, the cause-and-effect feedback loop and stock-and-flow diagram are formulated to explore the interdependency among these system dynamics variables of bridge resilience. Fuzzy measures and integral are used to establish the soft relationships and the existing mathematical formulas to explain the hard relationships in the FSD model. The proposed FSD model is used to simulate and forecast scenarios of the resilience of 12 bridges against floods. The structure and behavior of the FSD model are validated by conducting the dimension consistency test, structure verification test, and sensitivity analysis. The proposed model can be helpful to bridge owners to manage bridge assets, prioritize the repair and rehabilitation of bridges, propose the new bridges, devise the new policy, coordinate with other utilities and governance agencies, and thus enhance the bridge’s resilience against floods.
    publisherASCE
    titleDevelopment of Fuzzy System Dynamics Model to Forecast Bridge Resilience
    typeJournal Article
    journal volume27
    journal issue12
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001952
    journal fristpage04022114
    journal lastpage04022114_15
    page15
    treeJournal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian