YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Viscous Behavior and Constitutive Modeling of Peaty Soil in Kunming, China

    Source: International Journal of Geomechanics:;2022:;Volume ( 022 ):;issue: 012::page 04022218
    Author:
    Cheng Chen
    ,
    Xinming Li
    ,
    Weizheng Liu
    ,
    Xianwei Zhang
    ,
    Lingwei Kong
    DOI: 10.1061/(ASCE)GM.1943-5622.0002536
    Publisher: ASCE
    Abstract: The Kunming peaty soil exhibits distinct physical and mechanical properties from the inorganic clay due to the special soil-forming process and material composition. To better understand the viscous behavior of peaty soil, a series of laboratory tests, including four types of oedometer tests (one- and multistage loading creep tests, constant rate of strain tests, and constant rate of stress) and constant rate of strain undrained triaxial compression tests, are conducted on the Kunming peaty soil. The experimental results demonstrate that the Kunming peaty soil shows significant secondary compression during oedometer creep tests. Meanwhile, the variations of the measured preconsolidation pressure and undrained shear strength with the strain rate are essentially linear in log-log plot for the examined range of strain rate. Based on the generalized power law overstress viscoplastic theory, it is confirmed that the rate-sensitivity and time-dependency of the Kunming peaty soil can be uniformly described using the sensitivity parameter involved in the theory, regardless of the applied loading conditions. The average value of 0.06 for the sensitivity parameter is generally greater than those for inorganic clay, indicating that the Kunming peaty soil exhibits more significant viscous behavior. Finally, by using the yield surface of the modified Cam–clay model, an overstress elastic-viscoplastic model is established and numerically implemented. The numerical model with a unique sensitivity parameter can well predict the rate-sensitive and time-dependent response of Kunming peaty soil under different loading conditions.
    • Download: (2.162Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Viscous Behavior and Constitutive Modeling of Peaty Soil in Kunming, China

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289108
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorCheng Chen
    contributor authorXinming Li
    contributor authorWeizheng Liu
    contributor authorXianwei Zhang
    contributor authorLingwei Kong
    date accessioned2023-04-07T00:28:52Z
    date available2023-04-07T00:28:52Z
    date issued2022/12/01
    identifier other%28ASCE%29GM.1943-5622.0002536.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289108
    description abstractThe Kunming peaty soil exhibits distinct physical and mechanical properties from the inorganic clay due to the special soil-forming process and material composition. To better understand the viscous behavior of peaty soil, a series of laboratory tests, including four types of oedometer tests (one- and multistage loading creep tests, constant rate of strain tests, and constant rate of stress) and constant rate of strain undrained triaxial compression tests, are conducted on the Kunming peaty soil. The experimental results demonstrate that the Kunming peaty soil shows significant secondary compression during oedometer creep tests. Meanwhile, the variations of the measured preconsolidation pressure and undrained shear strength with the strain rate are essentially linear in log-log plot for the examined range of strain rate. Based on the generalized power law overstress viscoplastic theory, it is confirmed that the rate-sensitivity and time-dependency of the Kunming peaty soil can be uniformly described using the sensitivity parameter involved in the theory, regardless of the applied loading conditions. The average value of 0.06 for the sensitivity parameter is generally greater than those for inorganic clay, indicating that the Kunming peaty soil exhibits more significant viscous behavior. Finally, by using the yield surface of the modified Cam–clay model, an overstress elastic-viscoplastic model is established and numerically implemented. The numerical model with a unique sensitivity parameter can well predict the rate-sensitive and time-dependent response of Kunming peaty soil under different loading conditions.
    publisherASCE
    titleViscous Behavior and Constitutive Modeling of Peaty Soil in Kunming, China
    typeJournal Article
    journal volume22
    journal issue12
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0002536
    journal fristpage04022218
    journal lastpage04022218_13
    page13
    treeInternational Journal of Geomechanics:;2022:;Volume ( 022 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian