YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Inerter Nonlinearity and Its Influence on Control Efficiency of TMDI for Suppressing Vortex-Induced Vibration of Bridges

    Source: Journal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 011::page 04022101
    Author:
    Zhenchuan Li
    ,
    Kun Xu
    ,
    Kaiming Bi
    ,
    Qiang Han
    ,
    Xiuli Du
    DOI: 10.1061/(ASCE)BE.1943-5592.0001941
    Publisher: ASCE
    Abstract: Inerter-based dynamic vibration absorbers (IDVAs) have been theoretically studied in the vibration control of civil structures. However, experimental studies, especially studies on the nonlinearity of this mechanical device and its influence on the control efficiency of civil structures, are limited. In the present study, a ball-screw inerter aimed to control the vortex-induced vibration (VIV) of a scaled bridge model is designed and manufactured. The dynamic property of this device is examined through experiments. A nonlinear physical model is proposed to simulate this device and is incorporated into the governing equations of the bridge-TMDI (tuned mass damper inerter) system to investigate its influence on VIV control efficiency. Design suggestions on how to mitigate the influence of inerter nonlinearity are also proposed. The results indicate that the dynamic property of the ball-screw inerter depends on the magnitude of driving acceleration. With the increment of acceleration magnitude, the ball-screw inerter approaches an ideal linear inerter. Due to this acceleration-dependent property, the control efficiency of the TMDI when considering the inerter nonlinearity is worse than that of an ideal linear TMDI. By retuning the optimum design parameters of a TMDI obtained based on linear assumption, the influence of inerter nonlinearity can be compensated to some extent. In addition, for a certain designed inertance, one can choose a larger diameter of a ball screw and a larger value of lead to further reduce the influence of inerter nonlinearity. Even though this design option will reduce the mass amplification ratio of the inerter, the actual physical mass of the inerter is still ignorable as compared with the mass of the TMDI mass block.
    • Download: (10.89Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Inerter Nonlinearity and Its Influence on Control Efficiency of TMDI for Suppressing Vortex-Induced Vibration of Bridges

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289101
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorZhenchuan Li
    contributor authorKun Xu
    contributor authorKaiming Bi
    contributor authorQiang Han
    contributor authorXiuli Du
    date accessioned2023-04-07T00:28:40Z
    date available2023-04-07T00:28:40Z
    date issued2022/11/01
    identifier other%28ASCE%29BE.1943-5592.0001941.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289101
    description abstractInerter-based dynamic vibration absorbers (IDVAs) have been theoretically studied in the vibration control of civil structures. However, experimental studies, especially studies on the nonlinearity of this mechanical device and its influence on the control efficiency of civil structures, are limited. In the present study, a ball-screw inerter aimed to control the vortex-induced vibration (VIV) of a scaled bridge model is designed and manufactured. The dynamic property of this device is examined through experiments. A nonlinear physical model is proposed to simulate this device and is incorporated into the governing equations of the bridge-TMDI (tuned mass damper inerter) system to investigate its influence on VIV control efficiency. Design suggestions on how to mitigate the influence of inerter nonlinearity are also proposed. The results indicate that the dynamic property of the ball-screw inerter depends on the magnitude of driving acceleration. With the increment of acceleration magnitude, the ball-screw inerter approaches an ideal linear inerter. Due to this acceleration-dependent property, the control efficiency of the TMDI when considering the inerter nonlinearity is worse than that of an ideal linear TMDI. By retuning the optimum design parameters of a TMDI obtained based on linear assumption, the influence of inerter nonlinearity can be compensated to some extent. In addition, for a certain designed inertance, one can choose a larger diameter of a ball screw and a larger value of lead to further reduce the influence of inerter nonlinearity. Even though this design option will reduce the mass amplification ratio of the inerter, the actual physical mass of the inerter is still ignorable as compared with the mass of the TMDI mass block.
    publisherASCE
    titleInerter Nonlinearity and Its Influence on Control Efficiency of TMDI for Suppressing Vortex-Induced Vibration of Bridges
    typeJournal Article
    journal volume27
    journal issue11
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001941
    journal fristpage04022101
    journal lastpage04022101_19
    page19
    treeJournal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian