YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Contact Stress and Rolling Loss Estimation via Thermomechanical Interaction Modeling of a Truck Tire on a Pavement Layer

    Source: Journal of Engineering Mechanics:;2022:;Volume ( 148 ):;issue: 012::page 04022071
    Author:
    Angeli Jayme
    ,
    Imad L. Al-Qadi
    DOI: 10.1061/(ASCE)EM.1943-7889.0002154
    Publisher: ASCE
    Abstract: Combined influence of temperature and mechanical deformations define the resulting contact stresses, heat flow, and rolling loss at the tire–pavement contact. In this study, the thermomechanical coupling of a hyperviscoelastic tire with a deformable pavement layer revealed the impact and extent of temperature influence on the hysteretic loss of a rolling tire. A scheme to predict the three-dimensional contact stress distribution was established that incorporated the thermomechanical interaction between a rolling hyperviscoelastic truck tire and a deformable pavement layer. The fully coupled thermal-stress model addressed two distinct yet intertwined perspectives: (1) establishing a thermomechanical database and prediction tool to generate contact stresses as inputs for pavement structural design, and (2) quantifying the associated rolling loss at the tire–pavement interaction that relates to tire design configurations and environmental impacts. Differences in the resulting contact stresses and rolling energy loss were observed between imposing uniform and nonuniform temperature profiles. Both the range and magnitudes of stresses throughout the tire–pavement contact imprint changed drastically as varying temperature profiles were implemented. Ranking the influence of thermal boundary conditions, the ambient temperature induced the highest impact on the dissipation energy and change in contact stress distribution, followed by the road and inner tire surface conditions. Moreover, the global hysteretic loss within the tire as myriad temperature profiles were imposed did not change significantly; however, the creep dissipation observed within the contact imprint revealed a higher disparity. In this study, a finite-element model was established to simulate a free-rolling truck tire over a pavement layer and determine the combined influence of temperature and loading on the three-dimensional contact stresses and hysteretic loss. The thermomechanical interaction between the truck tire and pavement layer impacted both the range and magnitude of the contact stresses, wherein differences were observed between imposing uniform and nonuniform temperature profiles. Particularly, the ambient temperature had the highest impact on the contact stress distribution and dissipation energy, in contrast to the level of influence from the pavement surface temperature and internal tire air temperature. In lieu of complex models, nonlinear regression equations were developed as a simple means to generate three-dimensional contact stress inputs for pavement analysis. Future model improvements and considerations may include other rolling conditions, such as braking, accelerating, or cornering conditions; temperature-dependent tire-inflation pressure and interface friction; influence of air and sun through convection and radiation along with daily temperature cycles; and a viscoelastic asphalt pavement layer.
    • Download: (4.580Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Contact Stress and Rolling Loss Estimation via Thermomechanical Interaction Modeling of a Truck Tire on a Pavement Layer

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289062
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorAngeli Jayme
    contributor authorImad L. Al-Qadi
    date accessioned2023-04-07T00:27:30Z
    date available2023-04-07T00:27:30Z
    date issued2022/12/01
    identifier other%28ASCE%29EM.1943-7889.0002154.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289062
    description abstractCombined influence of temperature and mechanical deformations define the resulting contact stresses, heat flow, and rolling loss at the tire–pavement contact. In this study, the thermomechanical coupling of a hyperviscoelastic tire with a deformable pavement layer revealed the impact and extent of temperature influence on the hysteretic loss of a rolling tire. A scheme to predict the three-dimensional contact stress distribution was established that incorporated the thermomechanical interaction between a rolling hyperviscoelastic truck tire and a deformable pavement layer. The fully coupled thermal-stress model addressed two distinct yet intertwined perspectives: (1) establishing a thermomechanical database and prediction tool to generate contact stresses as inputs for pavement structural design, and (2) quantifying the associated rolling loss at the tire–pavement interaction that relates to tire design configurations and environmental impacts. Differences in the resulting contact stresses and rolling energy loss were observed between imposing uniform and nonuniform temperature profiles. Both the range and magnitudes of stresses throughout the tire–pavement contact imprint changed drastically as varying temperature profiles were implemented. Ranking the influence of thermal boundary conditions, the ambient temperature induced the highest impact on the dissipation energy and change in contact stress distribution, followed by the road and inner tire surface conditions. Moreover, the global hysteretic loss within the tire as myriad temperature profiles were imposed did not change significantly; however, the creep dissipation observed within the contact imprint revealed a higher disparity. In this study, a finite-element model was established to simulate a free-rolling truck tire over a pavement layer and determine the combined influence of temperature and loading on the three-dimensional contact stresses and hysteretic loss. The thermomechanical interaction between the truck tire and pavement layer impacted both the range and magnitude of the contact stresses, wherein differences were observed between imposing uniform and nonuniform temperature profiles. Particularly, the ambient temperature had the highest impact on the contact stress distribution and dissipation energy, in contrast to the level of influence from the pavement surface temperature and internal tire air temperature. In lieu of complex models, nonlinear regression equations were developed as a simple means to generate three-dimensional contact stress inputs for pavement analysis. Future model improvements and considerations may include other rolling conditions, such as braking, accelerating, or cornering conditions; temperature-dependent tire-inflation pressure and interface friction; influence of air and sun through convection and radiation along with daily temperature cycles; and a viscoelastic asphalt pavement layer.
    publisherASCE
    titleContact Stress and Rolling Loss Estimation via Thermomechanical Interaction Modeling of a Truck Tire on a Pavement Layer
    typeJournal Article
    journal volume148
    journal issue12
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0002154
    journal fristpage04022071
    journal lastpage04022071_17
    page17
    treeJournal of Engineering Mechanics:;2022:;Volume ( 148 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian