YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Structures That Can Be Made with Carbon Nanotube Fibers but Not with Other Materials

    Source: Journal of Engineering Mechanics:;2022:;Volume ( 148 ):;issue: 012::page 04022077
    Author:
    Reginald Desroches
    ,
    Giovanni Migliaccio
    ,
    Gianni Royer-Carfagni
    DOI: 10.1061/(ASCE)EM.1943-7889.0002138
    Publisher: ASCE
    Abstract: As already indicated by Galileo, the laws of rescaling for load-bearing structures do not follow the simple geometric proportion because the structural weight increases more than the structural capacity and can equally lead to an effective loss of stiffness. Developing the theory originally proposed by Stüssi, the structural capacity of various materials are compared on the basis of performance indexes, such as specific strength and specific stiffness. This highlights how the structural weight increases as a function of the service load for various static schemes, dictating a theoretical limit for the structural size. Worked examples are presented in the fields of civil, marine, and aerospace engineering. Solution-spun carbon nanotube fibers appear promising because they are sustainable green materials whose capacity is superior to the best steels and comparable with the state-of-the-art carbon and Kevlar fibers. It is expected that the continuous improvement of the production techniques can bring their performances close to the theoretical limit of the constituent carbon nanotubes (CNTs), allowing the construction of superstructures not even imaginable today with the currently available materials.
    • Download: (2.591Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Structures That Can Be Made with Carbon Nanotube Fibers but Not with Other Materials

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289055
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorReginald Desroches
    contributor authorGiovanni Migliaccio
    contributor authorGianni Royer-Carfagni
    date accessioned2023-04-07T00:27:17Z
    date available2023-04-07T00:27:17Z
    date issued2022/12/01
    identifier other%28ASCE%29EM.1943-7889.0002138.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289055
    description abstractAs already indicated by Galileo, the laws of rescaling for load-bearing structures do not follow the simple geometric proportion because the structural weight increases more than the structural capacity and can equally lead to an effective loss of stiffness. Developing the theory originally proposed by Stüssi, the structural capacity of various materials are compared on the basis of performance indexes, such as specific strength and specific stiffness. This highlights how the structural weight increases as a function of the service load for various static schemes, dictating a theoretical limit for the structural size. Worked examples are presented in the fields of civil, marine, and aerospace engineering. Solution-spun carbon nanotube fibers appear promising because they are sustainable green materials whose capacity is superior to the best steels and comparable with the state-of-the-art carbon and Kevlar fibers. It is expected that the continuous improvement of the production techniques can bring their performances close to the theoretical limit of the constituent carbon nanotubes (CNTs), allowing the construction of superstructures not even imaginable today with the currently available materials.
    publisherASCE
    titleStructures That Can Be Made with Carbon Nanotube Fibers but Not with Other Materials
    typeJournal Article
    journal volume148
    journal issue12
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0002138
    journal fristpage04022077
    journal lastpage04022077_14
    page14
    treeJournal of Engineering Mechanics:;2022:;Volume ( 148 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian