YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Exact Winkler Solution for Laterally Loaded Piles in Inhomogeneous Soil

    Source: Journal of Engineering Mechanics:;2022:;Volume ( 148 ):;issue: 011::page 04022065
    Author:
    Jamie J. Crispin
    ,
    George Mylonakis
    DOI: 10.1061/(ASCE)EM.1943-7889.0002125
    Publisher: ASCE
    Abstract: A novel exact analytical solution is derived for the equation y(4)+xny=0 in the region x≥0, which is important for the analysis of piles in soil with stiffness varying with depth. To date, exact solutions for long piles are available only for the cases where n=−4, 0, and 1. For other values of the exponent n, solutions have formerly been obtained numerically, mainly by the finite-difference method or approximate analytical solutions. An inherent difficulty in obtaining solutions for long beams (which are used to model flexible piles) lies in the inability to isolate the regular, converging part of the solution over the singular part that diverges with increasing x. In this paper, an exact solution is derived for n>−4, focusing on the important case of semi-infinite beams. Key aspects of the problem such as the stiffness and flexibility matrices at the pile head, and the peak bending moments due to eccentrically acting lateral loads, are discussed. A novel approach for deriving Winkler spring moduli for combined force and moment loading is proposed and shown to provide good agreement with rigorous numerical continuum results.
    • Download: (1.446Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Exact Winkler Solution for Laterally Loaded Piles in Inhomogeneous Soil

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4289054
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorJamie J. Crispin
    contributor authorGeorge Mylonakis
    date accessioned2023-04-07T00:27:15Z
    date available2023-04-07T00:27:15Z
    date issued2022/11/01
    identifier other%28ASCE%29EM.1943-7889.0002125.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289054
    description abstractA novel exact analytical solution is derived for the equation y(4)+xny=0 in the region x≥0, which is important for the analysis of piles in soil with stiffness varying with depth. To date, exact solutions for long piles are available only for the cases where n=−4, 0, and 1. For other values of the exponent n, solutions have formerly been obtained numerically, mainly by the finite-difference method or approximate analytical solutions. An inherent difficulty in obtaining solutions for long beams (which are used to model flexible piles) lies in the inability to isolate the regular, converging part of the solution over the singular part that diverges with increasing x. In this paper, an exact solution is derived for n>−4, focusing on the important case of semi-infinite beams. Key aspects of the problem such as the stiffness and flexibility matrices at the pile head, and the peak bending moments due to eccentrically acting lateral loads, are discussed. A novel approach for deriving Winkler spring moduli for combined force and moment loading is proposed and shown to provide good agreement with rigorous numerical continuum results.
    publisherASCE
    titleExact Winkler Solution for Laterally Loaded Piles in Inhomogeneous Soil
    typeJournal Article
    journal volume148
    journal issue11
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0002125
    journal fristpage04022065
    journal lastpage04022065_19
    page19
    treeJournal of Engineering Mechanics:;2022:;Volume ( 148 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian