YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Investigating the Fiducial Marker Network Characteristics for Autonomous Mobile Indoor Robot Navigation Using ROS and Gazebo

    Source: Journal of Construction Engineering and Management:;2022:;Volume ( 148 ):;issue: 010::page 04022115
    Author:
    Bharadwaj R. K. Mantha
    ,
    Borja Garcia de Soto
    DOI: 10.1061/(ASCE)CO.1943-7862.0002378
    Publisher: ASCE
    Abstract: Building service robots rely on dense instrumentation of the building (e.g., Bluetooth beacons) or require high computational capabilities [e.g., simultaneous localization and mapping (SLAM)]. To overcome these limitations, studies explored a landmark-based localization and navigation approach based on inexpensive, computationally efficient, and easily configurable fiducial markers (e.g., AprilTags). However, context-specific assumptions were made regarding the fiducial marker characteristics and sensor configurations. Taking this forward, this study develops a generalized simulation-based approach to determine the optimal design characteristics of the fiducial marker network to achieve successful autonomous mobile indoor robot navigation with low instrumentation and computation. Different marker and camera parameters such as marker size and marker placement to optimize the density of fiducial markers (i.e., the ideal distance between subsequent markers) were investigated using Robot Operating Systems (ROS) and Gazebo (simulator) software. The simulation experiments focused on a specific robotic platform (i.e., TurtleBot3) and marker type (i.e., AprilTag). Results from the simulations suggested that with an increase in marker distance, the navigation success rate does not necessarily decrease. In addition, a marker size of 0.1 m performed the best in terms of navigation success rate (as high as 100% for a specific combination of marker height, marker size, and marker-to-marker distance). Future work aims to test this in a real-world setting to compare and analyze the simulated and actual performance of the robot. The proposed methodology is generic and can be applied to any mobile robotic platform, marker type, building type (e.g., residential), and application (e.g., construction progress monitoring).
    • Download: (1.813Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Investigating the Fiducial Marker Network Characteristics for Autonomous Mobile Indoor Robot Navigation Using ROS and Gazebo

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4288015
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorBharadwaj R. K. Mantha
    contributor authorBorja Garcia de Soto
    date accessioned2022-12-27T20:48:12Z
    date available2022-12-27T20:48:12Z
    date issued2022/10/01
    identifier other(ASCE)CO.1943-7862.0002378.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4288015
    description abstractBuilding service robots rely on dense instrumentation of the building (e.g., Bluetooth beacons) or require high computational capabilities [e.g., simultaneous localization and mapping (SLAM)]. To overcome these limitations, studies explored a landmark-based localization and navigation approach based on inexpensive, computationally efficient, and easily configurable fiducial markers (e.g., AprilTags). However, context-specific assumptions were made regarding the fiducial marker characteristics and sensor configurations. Taking this forward, this study develops a generalized simulation-based approach to determine the optimal design characteristics of the fiducial marker network to achieve successful autonomous mobile indoor robot navigation with low instrumentation and computation. Different marker and camera parameters such as marker size and marker placement to optimize the density of fiducial markers (i.e., the ideal distance between subsequent markers) were investigated using Robot Operating Systems (ROS) and Gazebo (simulator) software. The simulation experiments focused on a specific robotic platform (i.e., TurtleBot3) and marker type (i.e., AprilTag). Results from the simulations suggested that with an increase in marker distance, the navigation success rate does not necessarily decrease. In addition, a marker size of 0.1 m performed the best in terms of navigation success rate (as high as 100% for a specific combination of marker height, marker size, and marker-to-marker distance). Future work aims to test this in a real-world setting to compare and analyze the simulated and actual performance of the robot. The proposed methodology is generic and can be applied to any mobile robotic platform, marker type, building type (e.g., residential), and application (e.g., construction progress monitoring).
    publisherASCE
    titleInvestigating the Fiducial Marker Network Characteristics for Autonomous Mobile Indoor Robot Navigation Using ROS and Gazebo
    typeJournal Article
    journal volume148
    journal issue10
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/(ASCE)CO.1943-7862.0002378
    journal fristpage04022115
    journal lastpage04022115_13
    page13
    treeJournal of Construction Engineering and Management:;2022:;Volume ( 148 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian