YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Large-Tonnage High-Strength CFRP Cable-Anchor System: Experimental Investigation and FE Study

    Source: Journal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 005::page 04022053
    Author:
    Jingyang Zhou
    ,
    Xin Wang
    ,
    Zhishen Wu
    ,
    Zhongguo Zhu
    DOI: 10.1061/(ASCE)CC.1943-5614.0001247
    Publisher: ASCE
    Abstract: In this study, a parallel-tendon and dispersed-tendon cable anchor system (CAS) for high-strength carbon-fiber-reinforced polymer (CFRP) cables were investigated based on a previously developed load transfer component (LTC). The static behaviors of three cables comprising 37 CFRP tendons with a 7-mm tendon diameter were experimentally evaluated and the failure mechanism of the cables was numerically revealed. The parallel-tendon cable exhibited an integral pull-out failure caused by a shear failure of the LTC, while the dispersed-tendon cables showed a mixed shear and compressive failure caused by an excessive axial tensile strain difference and wedge action of the LTC. From loading end to free end, the shear stress of the LTC first increased rapidly, and then increased slowly with fluctuations, and finally peaked the free end. The experimental and numerical results agreed well in the axial cable strains and shear stresses of the LTC. By optimizing parallel tendons into dispersed tendons in the anchor zone, the anchor efficiency of the cable was improved from 60% to 91%. Correspondingly, the cable force was improved from 2,684 to 4,070 kN. The increase in the anchor length and decrease in the conical angle can decrease the stress concentration of the dispersed-tendon CAS.
    • Download: (3.562Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Large-Tonnage High-Strength CFRP Cable-Anchor System: Experimental Investigation and FE Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287978
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorJingyang Zhou
    contributor authorXin Wang
    contributor authorZhishen Wu
    contributor authorZhongguo Zhu
    date accessioned2022-12-27T20:46:52Z
    date available2022-12-27T20:46:52Z
    date issued2022/10/01
    identifier other(ASCE)CC.1943-5614.0001247.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287978
    description abstractIn this study, a parallel-tendon and dispersed-tendon cable anchor system (CAS) for high-strength carbon-fiber-reinforced polymer (CFRP) cables were investigated based on a previously developed load transfer component (LTC). The static behaviors of three cables comprising 37 CFRP tendons with a 7-mm tendon diameter were experimentally evaluated and the failure mechanism of the cables was numerically revealed. The parallel-tendon cable exhibited an integral pull-out failure caused by a shear failure of the LTC, while the dispersed-tendon cables showed a mixed shear and compressive failure caused by an excessive axial tensile strain difference and wedge action of the LTC. From loading end to free end, the shear stress of the LTC first increased rapidly, and then increased slowly with fluctuations, and finally peaked the free end. The experimental and numerical results agreed well in the axial cable strains and shear stresses of the LTC. By optimizing parallel tendons into dispersed tendons in the anchor zone, the anchor efficiency of the cable was improved from 60% to 91%. Correspondingly, the cable force was improved from 2,684 to 4,070 kN. The increase in the anchor length and decrease in the conical angle can decrease the stress concentration of the dispersed-tendon CAS.
    publisherASCE
    titleA Large-Tonnage High-Strength CFRP Cable-Anchor System: Experimental Investigation and FE Study
    typeJournal Article
    journal volume26
    journal issue5
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001247
    journal fristpage04022053
    journal lastpage04022053_14
    page14
    treeJournal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian