YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    How Concrete Filling Fundamentally Changes Stress–Strain Curve of Angle-Ply FRP Tubes in Tension

    Source: Journal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 005::page 04022063
    Author:
    Akram Jawdhari
    ,
    Amir Fam
    ,
    Pedram Sadeghian
    DOI: 10.1061/(ASCE)CC.1943-5614.0001245
    Publisher: ASCE
    Abstract: Angle-ply (±55°) fiber-reinforced polymer (FRP) tubes are widely available and have been used in concrete-filled FRP tube (CFFT) members. Two observations have been reported regarding the behavior of these tubes in tension: a remarkably nonlinear stress–strain response and a significant increase in their tensile strength and stiffness when filled with concrete. To better understand these phenomena, a robust finite-element model is developed using LS DYNA software and validated against a diverse experimental database. It showed that the nonlinear behavior of the tube is mainly due to matrix cracking perpendicular to the fibers and to a lesser extent due to in-plane shear along diagonal bands. Concrete filling restrains the large radial and circumferential contraction of the hollow tube under longitudinal tension, thereby generating significant hoop tensile stresses and consequently a state of biaxial tensile stress. A failure envelope under such stress combination was developed and far exceeded uniaxial strength in either direction. A parametric study was performed on 68 new models with various properties. The longitudinal tensile strength (σmax) of CFFT tubes with fiber angles (θ) relative to longitudinal axis of 35°, 45°, 55°, 65°, and 75° increased 2.9, 4.1, 3.3, 2.8, and 1.4 times, respectively, that of hollow counterparts. Design-oriented equations were developed to represent the enhanced longitudinal bilinear stress–strain curve when the tube is filled with concrete. It can be used for flexural strength calculations of CFFTs, which would otherwise be grossly underestimated if calculated using hollow tube properties reported by the manufacturer or established from longitudinal coupon tests or from classical lamination theory.
    • Download: (3.261Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      How Concrete Filling Fundamentally Changes Stress–Strain Curve of Angle-Ply FRP Tubes in Tension

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287976
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorAkram Jawdhari
    contributor authorAmir Fam
    contributor authorPedram Sadeghian
    date accessioned2022-12-27T20:46:50Z
    date available2022-12-27T20:46:50Z
    date issued2022/10/01
    identifier other(ASCE)CC.1943-5614.0001245.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287976
    description abstractAngle-ply (±55°) fiber-reinforced polymer (FRP) tubes are widely available and have been used in concrete-filled FRP tube (CFFT) members. Two observations have been reported regarding the behavior of these tubes in tension: a remarkably nonlinear stress–strain response and a significant increase in their tensile strength and stiffness when filled with concrete. To better understand these phenomena, a robust finite-element model is developed using LS DYNA software and validated against a diverse experimental database. It showed that the nonlinear behavior of the tube is mainly due to matrix cracking perpendicular to the fibers and to a lesser extent due to in-plane shear along diagonal bands. Concrete filling restrains the large radial and circumferential contraction of the hollow tube under longitudinal tension, thereby generating significant hoop tensile stresses and consequently a state of biaxial tensile stress. A failure envelope under such stress combination was developed and far exceeded uniaxial strength in either direction. A parametric study was performed on 68 new models with various properties. The longitudinal tensile strength (σmax) of CFFT tubes with fiber angles (θ) relative to longitudinal axis of 35°, 45°, 55°, 65°, and 75° increased 2.9, 4.1, 3.3, 2.8, and 1.4 times, respectively, that of hollow counterparts. Design-oriented equations were developed to represent the enhanced longitudinal bilinear stress–strain curve when the tube is filled with concrete. It can be used for flexural strength calculations of CFFTs, which would otherwise be grossly underestimated if calculated using hollow tube properties reported by the manufacturer or established from longitudinal coupon tests or from classical lamination theory.
    publisherASCE
    titleHow Concrete Filling Fundamentally Changes Stress–Strain Curve of Angle-Ply FRP Tubes in Tension
    typeJournal Article
    journal volume26
    journal issue5
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001245
    journal fristpage04022063
    journal lastpage04022063_17
    page17
    treeJournal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian