YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Architectural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Architectural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Scan4Façade: Automated As-Is Façade Modeling of Historic High-Rise Buildings Using Drones and AI

    Source: Journal of Architectural Engineering:;2022:;Volume ( 028 ):;issue: 004::page 04022031
    Author:
    Yuhan Jiang
    ,
    Sisi Han
    ,
    Yong Bai
    DOI: 10.1061/(ASCE)AE.1943-5568.0000564
    Publisher: ASCE
    Abstract: This paper presents an automated as-is façade modeling method for existing and historic high-rise buildings, named Scan4Façade. To begin with, a camera drone with a spiral path is employed to capture building exterior images, and photogrammetry is used to conduct three-dimensional (3D) reconstruction and create mesh models for the scanned building façades. High-resolution façade orthoimages are then generated from mesh models and pixelwise segmented by an artificial intelligence (AI) model named U-net. A combined data augmentation strategy, including random flipping, rotation, resizing, perspective transformation, and color adjustment, is proposed for model training with a limited number of labels. As a result, the U-net achieves an average pixel accuracy of 0.9696 and a mean intersection over union of 0.9063 in testing. Then, the developed twoStagesClustering algorithm, with a two-round shape clustering and a two-round coordinates clustering, is used to precisely extract façade elements’ dimensions and coordinates from façade orthoimages and pixelwise label. In testing with the Michigan Central Station (office tower), a historic high-rise building, the developed algorithm achieves an accuracy of 99.77% in window extraction. In addition, the extracted façade geometric information and element types are transformed into AutoCAD command and script files to create CAD drawings without manual interaction. Experimental results also show that the proposed Scan4Façade method can provide clear and accurate information to assist BIM feature creation in Revit. Future research recommendations are also stated in this paper.
    • Download: (4.533Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Scan4Façade: Automated As-Is Façade Modeling of Historic High-Rise Buildings Using Drones and AI

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287974
    Collections
    • Journal of Architectural Engineering

    Show full item record

    contributor authorYuhan Jiang
    contributor authorSisi Han
    contributor authorYong Bai
    date accessioned2022-12-27T20:46:46Z
    date available2022-12-27T20:46:46Z
    date issued2022/12/01
    identifier other(ASCE)AE.1943-5568.0000564.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287974
    description abstractThis paper presents an automated as-is façade modeling method for existing and historic high-rise buildings, named Scan4Façade. To begin with, a camera drone with a spiral path is employed to capture building exterior images, and photogrammetry is used to conduct three-dimensional (3D) reconstruction and create mesh models for the scanned building façades. High-resolution façade orthoimages are then generated from mesh models and pixelwise segmented by an artificial intelligence (AI) model named U-net. A combined data augmentation strategy, including random flipping, rotation, resizing, perspective transformation, and color adjustment, is proposed for model training with a limited number of labels. As a result, the U-net achieves an average pixel accuracy of 0.9696 and a mean intersection over union of 0.9063 in testing. Then, the developed twoStagesClustering algorithm, with a two-round shape clustering and a two-round coordinates clustering, is used to precisely extract façade elements’ dimensions and coordinates from façade orthoimages and pixelwise label. In testing with the Michigan Central Station (office tower), a historic high-rise building, the developed algorithm achieves an accuracy of 99.77% in window extraction. In addition, the extracted façade geometric information and element types are transformed into AutoCAD command and script files to create CAD drawings without manual interaction. Experimental results also show that the proposed Scan4Façade method can provide clear and accurate information to assist BIM feature creation in Revit. Future research recommendations are also stated in this paper.
    publisherASCE
    titleScan4Façade: Automated As-Is Façade Modeling of Historic High-Rise Buildings Using Drones and AI
    typeJournal Article
    journal volume28
    journal issue4
    journal titleJournal of Architectural Engineering
    identifier doi10.1061/(ASCE)AE.1943-5568.0000564
    journal fristpage04022031
    journal lastpage04022031_22
    page22
    treeJournal of Architectural Engineering:;2022:;Volume ( 028 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian