YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stability Analysis and Speed-Coordinated Control of Mixed Traffic Flow in Expressway Merging Area

    Source: Journal of Transportation Engineering, Part A: Systems:;2022:;Volume ( 148 ):;issue: 011::page 04022098
    Author:
    Wei Hao
    ,
    Donglei Rong
    ,
    Zhaolei Zhang
    ,
    Young-Ji Byon
    ,
    Nengchao Lv
    ,
    Ying Chen
    DOI: 10.1061/JTEPBS.0000755
    Publisher: ASCE
    Abstract: This paper considers the stability of mixed traffic flow and the necessity of speed control to achieve safety and efficiency goals. Therefore, a speed-coordinated control model is proposed for mixed traffic flow based on stability analysis at an expressway merging area. Firstly, stability intervals are obtained by using an intracluster stability analysis in an intercluster. Secondly, a speed-coordinated control model is set up considering the stability characteristics in a merging area. Finally, an objective function is developed, which considers time-to-collision (TTC), dynamic space occupancy (DSO), and vehicle specific power (VSP). A numerical simulation is built up to analyze the traffic conditions and stability by using the proposed model against a null scenario without using the proposed model. The analysis results indicate that the stability of the intracluster has two regions, and the stability of the intercluster is mainly affected by the speed fluctuation and the distance between the merging cluster and the vehicles on the main road. Secondly, the proposed model tends to gradually achieve a steady state when the position reaches 180 m. Meanwhile, the efficiency of the model is found to be the best when the minimum safe-distance interval is set at (18, 27). In addition, the volatility of TTC drops by 5% and the DSO has reached 11.99% in the acceleration lane optimization together with 18.37% in the main lane optimization. The frequency is found to be the highest when the VSP reaches (10, 20), and the optimized efficiency reaches 45%–50%. The model proposed in this paper will effectively analyze the stability characteristics of mixed traffic flow and provides a research foundation for the stability of mixed traffic flow. Moreover, this model builds up a multi-objective-oriented speed-coordinated control scheme for high-efficiency operations in the merging area and provides technical support for traffic management in the future.
    • Download: (2.519Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stability Analysis and Speed-Coordinated Control of Mixed Traffic Flow in Expressway Merging Area

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287970
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorWei Hao
    contributor authorDonglei Rong
    contributor authorZhaolei Zhang
    contributor authorYoung-Ji Byon
    contributor authorNengchao Lv
    contributor authorYing Chen
    date accessioned2022-12-27T20:46:35Z
    date available2022-12-27T20:46:35Z
    date issued2022/11/01
    identifier otherJTEPBS.0000755.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287970
    description abstractThis paper considers the stability of mixed traffic flow and the necessity of speed control to achieve safety and efficiency goals. Therefore, a speed-coordinated control model is proposed for mixed traffic flow based on stability analysis at an expressway merging area. Firstly, stability intervals are obtained by using an intracluster stability analysis in an intercluster. Secondly, a speed-coordinated control model is set up considering the stability characteristics in a merging area. Finally, an objective function is developed, which considers time-to-collision (TTC), dynamic space occupancy (DSO), and vehicle specific power (VSP). A numerical simulation is built up to analyze the traffic conditions and stability by using the proposed model against a null scenario without using the proposed model. The analysis results indicate that the stability of the intracluster has two regions, and the stability of the intercluster is mainly affected by the speed fluctuation and the distance between the merging cluster and the vehicles on the main road. Secondly, the proposed model tends to gradually achieve a steady state when the position reaches 180 m. Meanwhile, the efficiency of the model is found to be the best when the minimum safe-distance interval is set at (18, 27). In addition, the volatility of TTC drops by 5% and the DSO has reached 11.99% in the acceleration lane optimization together with 18.37% in the main lane optimization. The frequency is found to be the highest when the VSP reaches (10, 20), and the optimized efficiency reaches 45%–50%. The model proposed in this paper will effectively analyze the stability characteristics of mixed traffic flow and provides a research foundation for the stability of mixed traffic flow. Moreover, this model builds up a multi-objective-oriented speed-coordinated control scheme for high-efficiency operations in the merging area and provides technical support for traffic management in the future.
    publisherASCE
    titleStability Analysis and Speed-Coordinated Control of Mixed Traffic Flow in Expressway Merging Area
    typeJournal Article
    journal volume148
    journal issue11
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/JTEPBS.0000755
    journal fristpage04022098
    journal lastpage04022098_14
    page14
    treeJournal of Transportation Engineering, Part A: Systems:;2022:;Volume ( 148 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian