YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Automated Sound Barrier Inventory Method Using Mobile LiDAR

    Source: Journal of Transportation Engineering, Part A: Systems:;2022:;Volume ( 148 ):;issue: 010::page 04022078
    Author:
    Qing Hou
    ,
    Chengbo Ai
    DOI: 10.1061/JTEPBS.0000732
    Publisher: ASCE
    Abstract: A sound barrier, also called a noise barrier, plays an irreplaceable role in traffic noise abatement. The Federal Highway Administration’s (FHWA) highway noise regulation requires each state highway agency to maintain a complete inventory of all constructed noise-abatement features. Although key information for most of the newly constructed sound barriers has been inventoried, public transportation agencies are still struggling to keep close track of the in-service barriers because their inventory information is nonexisting, and manual inventory remains time-consuming, labor-intensive, and often dangerous. Therefore, many agencies have shown more interest in exploring the possibility of using light detection and ranging (LiDAR) data for assisting in sound barrier inventory, thanks to the widely available data set and much-improved data quality. This study proposes a LiDAR-based sound barrier inventory method to automatically extract the sound barrier’s location and measure the corresponding geometry. The extraction of a sound barrier is achieved using its unique features after random sample consensus (RANSAC)-based ground extraction and region-growing segmentation. The geometry measurement of the sound barrier is performed by analyzing the detailed dimension of the extracted point cloud, including location, height, length, and lateral offset. The experimental test conducted near Carver, Massachusetts showed the results with a precision rate of 99.9% and a recall rate of 93.8%. Moreover, the outcome of the experimental test has demonstrated the robustness of the proposed method in different complexities of the background and sound barrier types (linear and zigzag). This study has demonstrated the feasibility of using LiDAR for effectively inventorying in-service barriers. Besides the critical application of asset management, the detailed location and geometry information provided by the proposed method can provide valuable insight for other critical applications, such as traffic noise modeling.
    • Download: (3.075Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Automated Sound Barrier Inventory Method Using Mobile LiDAR

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287961
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorQing Hou
    contributor authorChengbo Ai
    date accessioned2022-12-27T20:46:12Z
    date available2022-12-27T20:46:12Z
    date issued2022/10/01
    identifier otherJTEPBS.0000732.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287961
    description abstractA sound barrier, also called a noise barrier, plays an irreplaceable role in traffic noise abatement. The Federal Highway Administration’s (FHWA) highway noise regulation requires each state highway agency to maintain a complete inventory of all constructed noise-abatement features. Although key information for most of the newly constructed sound barriers has been inventoried, public transportation agencies are still struggling to keep close track of the in-service barriers because their inventory information is nonexisting, and manual inventory remains time-consuming, labor-intensive, and often dangerous. Therefore, many agencies have shown more interest in exploring the possibility of using light detection and ranging (LiDAR) data for assisting in sound barrier inventory, thanks to the widely available data set and much-improved data quality. This study proposes a LiDAR-based sound barrier inventory method to automatically extract the sound barrier’s location and measure the corresponding geometry. The extraction of a sound barrier is achieved using its unique features after random sample consensus (RANSAC)-based ground extraction and region-growing segmentation. The geometry measurement of the sound barrier is performed by analyzing the detailed dimension of the extracted point cloud, including location, height, length, and lateral offset. The experimental test conducted near Carver, Massachusetts showed the results with a precision rate of 99.9% and a recall rate of 93.8%. Moreover, the outcome of the experimental test has demonstrated the robustness of the proposed method in different complexities of the background and sound barrier types (linear and zigzag). This study has demonstrated the feasibility of using LiDAR for effectively inventorying in-service barriers. Besides the critical application of asset management, the detailed location and geometry information provided by the proposed method can provide valuable insight for other critical applications, such as traffic noise modeling.
    publisherASCE
    titleAn Automated Sound Barrier Inventory Method Using Mobile LiDAR
    typeJournal Article
    journal volume148
    journal issue10
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/JTEPBS.0000732
    journal fristpage04022078
    journal lastpage04022078_10
    page10
    treeJournal of Transportation Engineering, Part A: Systems:;2022:;Volume ( 148 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian