YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Sustainable Water in the Built Environment
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Sustainable Water in the Built Environment
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multiyear Study on Phosphorus Discharge from Extensive Sedum Green Roofs with Substrate Amendments

    Source: Journal of Sustainable Water in the Built Environment:;2022:;Volume ( 008 ):;issue: 004::page 04022014
    Author:
    Yang Cheng
    ,
    David A. Vaccari
    ,
    Birgitte G. Johannesson
    ,
    Elizabeth Fassman-Beck
    DOI: 10.1061/JSWBAY.0000999
    Publisher: ASCE
    Abstract: Green roofs are implemented for providing urban ecosystem services like stormwater management, but they have also been identified as a potentially significant source of phosphorus in the runoff, which may cause concern for downstream water quality. A multiyear evaluation of phosphorus in green roof discharge and alternatives for phosphorus mitigation was conducted using 32 pilot-scale experimental green roofs. The extensive green roofs were made from nonproprietary base substrates [90 volumetric percentage (%v/v) lightweight aggregate (either pumice or expanded clay) and 10%v/v compost] and planted with a variety of sedum species. The roofs were initially constructed in 2017, and 38 storm events were sampled over four growing seasons for precipitation, runoff volumes, and total phosphorus (TP) event mean concentrations (EMCs) in discharge from the experimental extensive green roofs and a reference roof. All extensive green roofs tested were a source of elevated TP EMCs compared with the reference roof for the entire monitoring period. The green roofs initially exhibited high TP EMCs and variability, ranging from 0.46 to 0.89  mg/L (first and third quartiles), compared with the reference roof (90% of TP EMCs were below 0.05  mg/L). Green roof TP EMCs decreased to 0.11 and 0.19  mg/L (first and third quartiles) by the fourth growing season. A combination of measurement and modeling determined that a net reduction in annual cumulative TP mass discharged from the green roofs compared with the reference roof may be achieved because of the stormwater retention capacity of the green roofs. Amending materials, including zeolite, wood-derived biochar, and oat hull–derived biochar, were tested as a downstream permeable reactive barrier or as an additive in the base substrate (zeolite only). A zeolite addition of 20%v/v resulted in lower TP EMCs discharged than the base green roofs (without amendments). None of the other materials tested showed TP mitigating effects. There was no difference in TP EMCs among base green roofs after one growing season. The study highlights the initial excessive phosphorus content of the substrates exceeds the needs of sedum species and results in rapid phosphorus release in runoff discharged from green roofs.
    • Download: (1.714Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multiyear Study on Phosphorus Discharge from Extensive Sedum Green Roofs with Substrate Amendments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287952
    Collections
    • Journal of Sustainable Water in the Built Environment

    Show full item record

    contributor authorYang Cheng
    contributor authorDavid A. Vaccari
    contributor authorBirgitte G. Johannesson
    contributor authorElizabeth Fassman-Beck
    date accessioned2022-12-27T20:45:58Z
    date available2022-12-27T20:45:58Z
    date issued2022/11/01
    identifier otherJSWBAY.0000999.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287952
    description abstractGreen roofs are implemented for providing urban ecosystem services like stormwater management, but they have also been identified as a potentially significant source of phosphorus in the runoff, which may cause concern for downstream water quality. A multiyear evaluation of phosphorus in green roof discharge and alternatives for phosphorus mitigation was conducted using 32 pilot-scale experimental green roofs. The extensive green roofs were made from nonproprietary base substrates [90 volumetric percentage (%v/v) lightweight aggregate (either pumice or expanded clay) and 10%v/v compost] and planted with a variety of sedum species. The roofs were initially constructed in 2017, and 38 storm events were sampled over four growing seasons for precipitation, runoff volumes, and total phosphorus (TP) event mean concentrations (EMCs) in discharge from the experimental extensive green roofs and a reference roof. All extensive green roofs tested were a source of elevated TP EMCs compared with the reference roof for the entire monitoring period. The green roofs initially exhibited high TP EMCs and variability, ranging from 0.46 to 0.89  mg/L (first and third quartiles), compared with the reference roof (90% of TP EMCs were below 0.05  mg/L). Green roof TP EMCs decreased to 0.11 and 0.19  mg/L (first and third quartiles) by the fourth growing season. A combination of measurement and modeling determined that a net reduction in annual cumulative TP mass discharged from the green roofs compared with the reference roof may be achieved because of the stormwater retention capacity of the green roofs. Amending materials, including zeolite, wood-derived biochar, and oat hull–derived biochar, were tested as a downstream permeable reactive barrier or as an additive in the base substrate (zeolite only). A zeolite addition of 20%v/v resulted in lower TP EMCs discharged than the base green roofs (without amendments). None of the other materials tested showed TP mitigating effects. There was no difference in TP EMCs among base green roofs after one growing season. The study highlights the initial excessive phosphorus content of the substrates exceeds the needs of sedum species and results in rapid phosphorus release in runoff discharged from green roofs.
    publisherASCE
    titleMultiyear Study on Phosphorus Discharge from Extensive Sedum Green Roofs with Substrate Amendments
    typeJournal Article
    journal volume8
    journal issue4
    journal titleJournal of Sustainable Water in the Built Environment
    identifier doi10.1061/JSWBAY.0000999
    journal fristpage04022014
    journal lastpage04022014_12
    page12
    treeJournal of Sustainable Water in the Built Environment:;2022:;Volume ( 008 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian