YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Sustainable Water in the Built Environment
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Sustainable Water in the Built Environment
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Resilience Quantification of Low-Impact Development Systems Using SWMM and a Probabilistic Approach

    Source: Journal of Sustainable Water in the Built Environment:;2022:;Volume ( 008 ):;issue: 004::page 04022013
    Author:
    Arpita Islam
    ,
    Sonia Hassini
    ,
    Wael El-Dakhakhni
    DOI: 10.1061/JSWBAY.0000996
    Publisher: ASCE
    Abstract: Over the last few decades, there has been an increased demand for resilient low-impact development (LID) systems for stormwater management. During extreme uncertain events, a resilient LID system is expected not only to handle immediate stressors but also to rapidly adapt through changing and regulating itself to ensure continuous functionality. This study presents a new resilience quantification approach applicable to different LID systems. To demonstrate its utility, the developed approach was applied on a bioretention system. A set of equations for the LID system’s functionality was developed, integrating an analytical probabilistic approach (APA) and the stormwater management model (SWMM) continuous simulation output. These equations were subsequently used to evaluate resilience indices such as robustness, rapidity, serviceability, and the LID system’s reliability for different LID area ratios and surface depression storage depths. Both APA and SWMM exhibited similar resilience index values of 0.66–1.0 and 0.73–1.0, respectively. The overall reliability index values ranged from 60.50% to 100% when using SWMM and 56.67% to 100% when using APA, reflecting their consistency in predicting excellent system performance throughout the simulation period. However, the average rapidity index value prediction with APA was lower compared to SWMM. This slight variation was due to event-by-event hydrological simulation in APA, unlike the time step-by-time step continuous simulations in SWMM. The developed approach and findings of this study provide policy-makers with a consistent methodology to design resilient LID systems and empower decision-makers to strategize investment focused on optimized LID resilience-based designs.
    • Download: (2.378Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Resilience Quantification of Low-Impact Development Systems Using SWMM and a Probabilistic Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287951
    Collections
    • Journal of Sustainable Water in the Built Environment

    Show full item record

    contributor authorArpita Islam
    contributor authorSonia Hassini
    contributor authorWael El-Dakhakhni
    date accessioned2022-12-27T20:45:55Z
    date available2022-12-27T20:45:55Z
    date issued2022/11/01
    identifier otherJSWBAY.0000996.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287951
    description abstractOver the last few decades, there has been an increased demand for resilient low-impact development (LID) systems for stormwater management. During extreme uncertain events, a resilient LID system is expected not only to handle immediate stressors but also to rapidly adapt through changing and regulating itself to ensure continuous functionality. This study presents a new resilience quantification approach applicable to different LID systems. To demonstrate its utility, the developed approach was applied on a bioretention system. A set of equations for the LID system’s functionality was developed, integrating an analytical probabilistic approach (APA) and the stormwater management model (SWMM) continuous simulation output. These equations were subsequently used to evaluate resilience indices such as robustness, rapidity, serviceability, and the LID system’s reliability for different LID area ratios and surface depression storage depths. Both APA and SWMM exhibited similar resilience index values of 0.66–1.0 and 0.73–1.0, respectively. The overall reliability index values ranged from 60.50% to 100% when using SWMM and 56.67% to 100% when using APA, reflecting their consistency in predicting excellent system performance throughout the simulation period. However, the average rapidity index value prediction with APA was lower compared to SWMM. This slight variation was due to event-by-event hydrological simulation in APA, unlike the time step-by-time step continuous simulations in SWMM. The developed approach and findings of this study provide policy-makers with a consistent methodology to design resilient LID systems and empower decision-makers to strategize investment focused on optimized LID resilience-based designs.
    publisherASCE
    titleResilience Quantification of Low-Impact Development Systems Using SWMM and a Probabilistic Approach
    typeJournal Article
    journal volume8
    journal issue4
    journal titleJournal of Sustainable Water in the Built Environment
    identifier doi10.1061/JSWBAY.0000996
    journal fristpage04022013
    journal lastpage04022013_14
    page14
    treeJournal of Sustainable Water in the Built Environment:;2022:;Volume ( 008 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian