YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Highway and Transportation Research and Development (English Edition)
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Highway and Transportation Research and Development (English Edition)
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Analysis of Top-Down Crack in AC Layer of Continuous Reinforced Composite Pavement under Multifactor Coupling

    Source: Journal of Highway and Transportation Research and Development (English Edition):;2022:;Volume ( 016 ):;issue: 002::page 1-14
    Author:
    Yu-hu Luo
    ,
    Bo Tian
    ,
    Kai-min Niu
    DOI: 10.1061/JHTRCQ.0000817
    Publisher: ASCE
    Abstract: Top-down cracks are a typical disease of composite pavement. Its occurrence and expansion adversely affect the life of continuous reinforced composite pavement (CRCP). In order to explore the formation mechanism and propagation rule of top-down cracks in CRCP, based on the theory of linear elastic fracture mechanics, a 3D finite-element model of preinstalled cracks on the top of an AC layer was established. According to the main stress parameters that affect the formation of top-down cracks, the most unfavorable load position and the most unfavorable point corresponding to the stress parameters was determined. On this basis, the stress intensity factor of the crack tip under multifactor coupling was calculated by contour integration. The variance analysis of the multifactor crack tip stress intensity factor was carried out through the orthogonal test method, and the main factors affecting the formation and development of top-down cracks were determined. At the same time, the single-factor sensitivity analysis on these influencing factors was carried out, and thus the formation and expansion rule of top-down cracks in continuous reinforced composite pavement was revealed. The result shows that: (1) for the top-down cracks in continuous reinforced composite pavement, the most unfavorable load position is the loading position on the lateral crack side of the CRC layer, the unfavorable point of the longitudinal top-down crack is the loading position on the lateral crack side of the CRC layer at the inner edge of the proximal double wheels, and the unfavorable point on the transverse top-down crack is the loading line on the lateral crack side of the CRC layer; (2) the transverse top-down cracks are a comprehensive cracking mode with K2 type (sliding type) as the dominant type and K1 type (opening type) as the supplement, and AC layer thickness and crack–load transfer capacity are the main influencing factors; and (3) the cracking mode of longitudinal top-down cracks is dominated by K1 type, AC layer thickness, crack–load transfer capacity, crack spacing, and instantaneous temperature difference are the main influencing factors for its formation and propagation.
    • Download: (3.350Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Analysis of Top-Down Crack in AC Layer of Continuous Reinforced Composite Pavement under Multifactor Coupling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287941
    Collections
    • Journal of Highway and Transportation Research and Development (English Edition)

    Show full item record

    contributor authorYu-hu Luo
    contributor authorBo Tian
    contributor authorKai-min Niu
    date accessioned2022-12-27T20:45:36Z
    date available2022-12-27T20:45:36Z
    date issued2022/06/01
    identifier otherJHTRCQ.0000817.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287941
    description abstractTop-down cracks are a typical disease of composite pavement. Its occurrence and expansion adversely affect the life of continuous reinforced composite pavement (CRCP). In order to explore the formation mechanism and propagation rule of top-down cracks in CRCP, based on the theory of linear elastic fracture mechanics, a 3D finite-element model of preinstalled cracks on the top of an AC layer was established. According to the main stress parameters that affect the formation of top-down cracks, the most unfavorable load position and the most unfavorable point corresponding to the stress parameters was determined. On this basis, the stress intensity factor of the crack tip under multifactor coupling was calculated by contour integration. The variance analysis of the multifactor crack tip stress intensity factor was carried out through the orthogonal test method, and the main factors affecting the formation and development of top-down cracks were determined. At the same time, the single-factor sensitivity analysis on these influencing factors was carried out, and thus the formation and expansion rule of top-down cracks in continuous reinforced composite pavement was revealed. The result shows that: (1) for the top-down cracks in continuous reinforced composite pavement, the most unfavorable load position is the loading position on the lateral crack side of the CRC layer, the unfavorable point of the longitudinal top-down crack is the loading position on the lateral crack side of the CRC layer at the inner edge of the proximal double wheels, and the unfavorable point on the transverse top-down crack is the loading line on the lateral crack side of the CRC layer; (2) the transverse top-down cracks are a comprehensive cracking mode with K2 type (sliding type) as the dominant type and K1 type (opening type) as the supplement, and AC layer thickness and crack–load transfer capacity are the main influencing factors; and (3) the cracking mode of longitudinal top-down cracks is dominated by K1 type, AC layer thickness, crack–load transfer capacity, crack spacing, and instantaneous temperature difference are the main influencing factors for its formation and propagation.
    publisherASCE
    titleNumerical Analysis of Top-Down Crack in AC Layer of Continuous Reinforced Composite Pavement under Multifactor Coupling
    typeJournal Article
    journal volume16
    journal issue2
    journal titleJournal of Highway and Transportation Research and Development (English Edition)
    identifier doi10.1061/JHTRCQ.0000817
    journal fristpage1-14
    journal lastpage1-14_14
    page14
    treeJournal of Highway and Transportation Research and Development (English Edition):;2022:;Volume ( 016 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian