YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    ATeX: A Benchmark for Image Classification of Water in Different Waterbodies Using Deep Learning Approaches

    Source: Journal of Water Resources Planning and Management:;2022:;Volume ( 148 ):;issue: 011::page 04022063
    Author:
    Seyed Mohammad Hassan Erfani
    ,
    Erfan Goharian
    DOI: 10.1061/(ASCE)WR.1943-5452.0001615
    Publisher: ASCE
    Abstract: Visual detection and classification of water and waterbodies provide important information needed for managing water resources systems and infrastructure, such as developing flood early warning systems and drought management. But water itself is a challenging object for visual analysis because it is shapeless, colorless, and transparent. Therefore, detecting, tracking, and localizing water in different visual environments are difficult tasks. Computer vision (CV) techniques provide powerful tools for image processing and high-level scene analysis. Despite the complexities associated with water in visual scenes, there are still some physical differences, such as color, turbidity, and turbulence, affected by surrounding settings, which can potentially support CV modeling to cope with the visual processing challenges of water. The goal of this study is to introduce a new image data set, ATLANTIS Texture (ATeX), which represents various water textures of different waterbodies, and evaluate the performance of deep learning (DL) models for classification purposes on ATeX. Experimental results show that among DL models, EffNet-B7, EffNet-B0, GoogLeNet, and ShuffleNet V2×1.0 provide the highest precision, recall, and F1 score. However, by considering the training time, total number of parameters, and total memory occupied by these models, ShuffleNet V2×1.0 is presented as the most efficient DL network for water classification. Finally, results from this study suggest that ATeX provides a new benchmark to investigate existing challenges in the field of image analysis, in particular for water, which can help both water resources engineers and the computer vision community.
    • Download: (2.118Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      ATeX: A Benchmark for Image Classification of Water in Different Waterbodies Using Deep Learning Approaches

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287915
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorSeyed Mohammad Hassan Erfani
    contributor authorErfan Goharian
    date accessioned2022-12-27T20:44:40Z
    date available2022-12-27T20:44:40Z
    date issued2022/11/01
    identifier other(ASCE)WR.1943-5452.0001615.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287915
    description abstractVisual detection and classification of water and waterbodies provide important information needed for managing water resources systems and infrastructure, such as developing flood early warning systems and drought management. But water itself is a challenging object for visual analysis because it is shapeless, colorless, and transparent. Therefore, detecting, tracking, and localizing water in different visual environments are difficult tasks. Computer vision (CV) techniques provide powerful tools for image processing and high-level scene analysis. Despite the complexities associated with water in visual scenes, there are still some physical differences, such as color, turbidity, and turbulence, affected by surrounding settings, which can potentially support CV modeling to cope with the visual processing challenges of water. The goal of this study is to introduce a new image data set, ATLANTIS Texture (ATeX), which represents various water textures of different waterbodies, and evaluate the performance of deep learning (DL) models for classification purposes on ATeX. Experimental results show that among DL models, EffNet-B7, EffNet-B0, GoogLeNet, and ShuffleNet V2×1.0 provide the highest precision, recall, and F1 score. However, by considering the training time, total number of parameters, and total memory occupied by these models, ShuffleNet V2×1.0 is presented as the most efficient DL network for water classification. Finally, results from this study suggest that ATeX provides a new benchmark to investigate existing challenges in the field of image analysis, in particular for water, which can help both water resources engineers and the computer vision community.
    publisherASCE
    titleATeX: A Benchmark for Image Classification of Water in Different Waterbodies Using Deep Learning Approaches
    typeJournal Article
    journal volume148
    journal issue11
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0001615
    journal fristpage04022063
    journal lastpage04022063_10
    page10
    treeJournal of Water Resources Planning and Management:;2022:;Volume ( 148 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian