YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Downscaling of Precipitation for Climate Change Projections Using Multiple Machine Learning Techniques: Case Study of Shenzhen City, China

    Source: Journal of Water Resources Planning and Management:;2022:;Volume ( 148 ):;issue: 011::page 05022008
    Author:
    Jing-Cheng Han
    ,
    Wenting Zheng
    ,
    Zhe Liu
    ,
    Yang Zhou
    ,
    Yuefei Huang
    ,
    Bing Li
    DOI: 10.1061/(ASCE)WR.1943-5452.0001612
    Publisher: ASCE
    Abstract: To examine the characteristics of future precipitation under climate change is of great significance to urban water security. In this paper, multiple machine learning techniques, i.e., statistical downscaling model (SDSM), support vector machine (SVM), and multilayer perceptron (MLP), were used to downscale large-scale climatic variables simulated by the General Circulation Models (GCMs) to precipitation on a local scale. It was demonstrated in Shenzhen city, China, through multisite downscaling schemes based on projections from the Max Planck Institute Earth System Model (MPI-ESM1.2-HR), Meteorological Research Institute Earth System Model Version 2.0 (MRI-ESM2.0), and Beijing Climate Center Climate System Model (BCC-CSM2-MR). The obtained results showed that the downscaled precipitation would provide good monthly simulations against observations at 10 discrete stations. Regardless of superior performance of SVM and MLP over SDSM, the daily precipitation simulations should be further improved, and downscaling of heavy daily precipitations would be promoted by quantile mapping corrections. Due to the relatively poor simulation performance of BCC-CSM2-MR, the other two climate models were considered under the Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios) for ensemble precipitation projections for 2015–2100. Under the SSP1-2.6 scenario, the amounts of annual average precipitation for 10 stations were estimated to be higher relative to the historical period (2.7%–17%), and 9 out of 10 stations presented an increasing trend. However, downward trends also existed at three stations when it comes to scenarios SSP2-4.5 and SSP5-8.5. Moreover, a significantly positive trend was found to dominate the trend changes of annual extreme daily precipitation during 2015–2050, but the detected trends at stations were greatly dependent on the downscaling techniques and climate models. Besides, the increase in daily extreme precipitations for various return periods as well as statistically different precipitation characteristics for discrete stations would further shed light on urgent demands on urban resilient strategies for climate change adaptation.
    • Download: (4.484Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Downscaling of Precipitation for Climate Change Projections Using Multiple Machine Learning Techniques: Case Study of Shenzhen City, China

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287913
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorJing-Cheng Han
    contributor authorWenting Zheng
    contributor authorZhe Liu
    contributor authorYang Zhou
    contributor authorYuefei Huang
    contributor authorBing Li
    date accessioned2022-12-27T20:44:35Z
    date available2022-12-27T20:44:35Z
    date issued2022/11/01
    identifier other(ASCE)WR.1943-5452.0001612.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287913
    description abstractTo examine the characteristics of future precipitation under climate change is of great significance to urban water security. In this paper, multiple machine learning techniques, i.e., statistical downscaling model (SDSM), support vector machine (SVM), and multilayer perceptron (MLP), were used to downscale large-scale climatic variables simulated by the General Circulation Models (GCMs) to precipitation on a local scale. It was demonstrated in Shenzhen city, China, through multisite downscaling schemes based on projections from the Max Planck Institute Earth System Model (MPI-ESM1.2-HR), Meteorological Research Institute Earth System Model Version 2.0 (MRI-ESM2.0), and Beijing Climate Center Climate System Model (BCC-CSM2-MR). The obtained results showed that the downscaled precipitation would provide good monthly simulations against observations at 10 discrete stations. Regardless of superior performance of SVM and MLP over SDSM, the daily precipitation simulations should be further improved, and downscaling of heavy daily precipitations would be promoted by quantile mapping corrections. Due to the relatively poor simulation performance of BCC-CSM2-MR, the other two climate models were considered under the Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios) for ensemble precipitation projections for 2015–2100. Under the SSP1-2.6 scenario, the amounts of annual average precipitation for 10 stations were estimated to be higher relative to the historical period (2.7%–17%), and 9 out of 10 stations presented an increasing trend. However, downward trends also existed at three stations when it comes to scenarios SSP2-4.5 and SSP5-8.5. Moreover, a significantly positive trend was found to dominate the trend changes of annual extreme daily precipitation during 2015–2050, but the detected trends at stations were greatly dependent on the downscaling techniques and climate models. Besides, the increase in daily extreme precipitations for various return periods as well as statistically different precipitation characteristics for discrete stations would further shed light on urgent demands on urban resilient strategies for climate change adaptation.
    publisherASCE
    titleDownscaling of Precipitation for Climate Change Projections Using Multiple Machine Learning Techniques: Case Study of Shenzhen City, China
    typeJournal Article
    journal volume148
    journal issue11
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0001612
    journal fristpage05022008
    journal lastpage05022008_11
    page11
    treeJournal of Water Resources Planning and Management:;2022:;Volume ( 148 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian