YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Biaxial Bending and Axial Restraint on Hybrid Fiber Reinforced High-Performance Concrete Columns at Elevated Temperatures

    Source: Journal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 011::page 04022185
    Author:
    Panwei Du
    ,
    Yaowen Yang
    ,
    Kang Hai Tan
    DOI: 10.1061/(ASCE)ST.1943-541X.0003484
    Publisher: ASCE
    Abstract: The presence of axial restraint and biaxial load eccentricity plays a vital role in the behavior and design of columns under fire conditions. Because there is limited research on these two parameters, an experimental study on hybrid fiber reinforced high-performance concrete (HPC) columns subject to standard fire curve is performed to explore the effect of biaxial bending and axial restraint. A total of four full-scale HPC columns are tested to explore the structural and spalling behavior at elevated temperatures. Test results including thermal and structural responses are elaborated, and temperature distribution, structural deformation, thermally induced restraint force, crack pattern, and fire endurance are analyzed and discussed. Explosive spalling does not occur in all the columns even under biaxial load eccentricity and axial restraint, which is attributed to the presence of steel and polypropylene fibers. It is shown that thermally induced restraint force accelerates the deformations of restrained columns. Consequently, the fire endurance of restrained columns is reduced compared with unrestrained columns. Besides, a numerical model to trace the development of axial deformation and restraint force is proposed. The proposed model is validated with test results with respect to temperature profiles, axial deformation, and restraint force. It shows that the proposed model has reasonable accuracy.
    • Download: (1.844Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Biaxial Bending and Axial Restraint on Hybrid Fiber Reinforced High-Performance Concrete Columns at Elevated Temperatures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287884
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorPanwei Du
    contributor authorYaowen Yang
    contributor authorKang Hai Tan
    date accessioned2022-12-27T20:43:43Z
    date available2022-12-27T20:43:43Z
    date issued2022/11/01
    identifier other(ASCE)ST.1943-541X.0003484.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287884
    description abstractThe presence of axial restraint and biaxial load eccentricity plays a vital role in the behavior and design of columns under fire conditions. Because there is limited research on these two parameters, an experimental study on hybrid fiber reinforced high-performance concrete (HPC) columns subject to standard fire curve is performed to explore the effect of biaxial bending and axial restraint. A total of four full-scale HPC columns are tested to explore the structural and spalling behavior at elevated temperatures. Test results including thermal and structural responses are elaborated, and temperature distribution, structural deformation, thermally induced restraint force, crack pattern, and fire endurance are analyzed and discussed. Explosive spalling does not occur in all the columns even under biaxial load eccentricity and axial restraint, which is attributed to the presence of steel and polypropylene fibers. It is shown that thermally induced restraint force accelerates the deformations of restrained columns. Consequently, the fire endurance of restrained columns is reduced compared with unrestrained columns. Besides, a numerical model to trace the development of axial deformation and restraint force is proposed. The proposed model is validated with test results with respect to temperature profiles, axial deformation, and restraint force. It shows that the proposed model has reasonable accuracy.
    publisherASCE
    titleEffects of Biaxial Bending and Axial Restraint on Hybrid Fiber Reinforced High-Performance Concrete Columns at Elevated Temperatures
    typeJournal Article
    journal volume148
    journal issue11
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003484
    journal fristpage04022185
    journal lastpage04022185_15
    page15
    treeJournal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian