YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Implementation of Reduced-Order Modeling for Time-History Analysis of Hysteretic Structures Equipped with Seismic Protective Devices

    Source: Journal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 011::page 06022004
    Author:
    Dimitrios Patsialis
    ,
    Alexandros A. Taflanidis
    DOI: 10.1061/(ASCE)ST.1943-541X.0003441
    Publisher: ASCE
    Abstract: Reduced-order models (ROMs) can provide computationally efficient approximations of the response of finite element models (FEMs). Recent studies have examined the explicit calibration of hysteretic, multi-degree-of-freedom ROMs utilizing FEM time-history response data, and have demonstrated how the calibrated ROM can adequately replace the original FEM for seismic risk assessment. This study considers the extension of this work for applications involving seismic protection devices (SPDs). The ROM is calibrated for the building structure without the device, and can be subsequently used to assess the performance for any desired SPD (no need to perform recalibration with the SPD). This is demonstrated considering three different SPD types: fluid viscous dampers, tuned-mass dampers, and inerter-based devices. It is verified that the calibration of the ROM without the protective device is sufficient, because existence of the SPD does not alter the fundamental hysteretic behavior of the building. The computational efficiency of the calibration process itself (performed only once) and of the resultant ROM can ultimately support a comprehensive design and assessment of the SPD-equipped structure considering nonlinear time-history analysis, circumventing traditional computational constraints that have incentivized the use of linear models in this context.
    • Download: (377.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Implementation of Reduced-Order Modeling for Time-History Analysis of Hysteretic Structures Equipped with Seismic Protective Devices

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287866
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorDimitrios Patsialis
    contributor authorAlexandros A. Taflanidis
    date accessioned2022-12-27T20:43:06Z
    date available2022-12-27T20:43:06Z
    date issued2022/11/01
    identifier other(ASCE)ST.1943-541X.0003441.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287866
    description abstractReduced-order models (ROMs) can provide computationally efficient approximations of the response of finite element models (FEMs). Recent studies have examined the explicit calibration of hysteretic, multi-degree-of-freedom ROMs utilizing FEM time-history response data, and have demonstrated how the calibrated ROM can adequately replace the original FEM for seismic risk assessment. This study considers the extension of this work for applications involving seismic protection devices (SPDs). The ROM is calibrated for the building structure without the device, and can be subsequently used to assess the performance for any desired SPD (no need to perform recalibration with the SPD). This is demonstrated considering three different SPD types: fluid viscous dampers, tuned-mass dampers, and inerter-based devices. It is verified that the calibration of the ROM without the protective device is sufficient, because existence of the SPD does not alter the fundamental hysteretic behavior of the building. The computational efficiency of the calibration process itself (performed only once) and of the resultant ROM can ultimately support a comprehensive design and assessment of the SPD-equipped structure considering nonlinear time-history analysis, circumventing traditional computational constraints that have incentivized the use of linear models in this context.
    publisherASCE
    titleImplementation of Reduced-Order Modeling for Time-History Analysis of Hysteretic Structures Equipped with Seismic Protective Devices
    typeJournal Article
    journal volume148
    journal issue11
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003441
    journal fristpage06022004
    journal lastpage06022004_7
    page7
    treeJournal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian