YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Test and Analysis of Postfire Fatigue Performance of Steel Wires and Cables

    Source: Journal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 010::page 04022096
    Author:
    Zhaolei Zhang
    ,
    Tong Guo
    ,
    Zhongxiang Liu
    ,
    Shiyuan Wang
    DOI: 10.1061/(ASCE)BE.1943-5592.0001938
    Publisher: ASCE
    Abstract: Fire is an accidental, severe hazard for bridges during their lifetime. Hangers in suspension bridges are among the most vulnerable components with respect to the hanger fatigue effect, and fatigue performance after fire exposure is vital to bridge safety. Therefore, a comprehensive assessment of the postfire hanger fatigue property is necessary. In this study, fatigue tests were conducted on steel wires after various elevated temperatures, and a multiparameter Weibull model was adopted to describe the fatigue data. Based on the fatigue life distribution of steel wires and the corresponding parallel systems, the hanger fatigue life was evaluated using the Monte Carlo simulation and order statistics approach, and the S–N curves were obtained. The results demonstrated that the fatigue life of the hanger was significantly lower than the mean life of the individual wires, and degraded as the exposure temperature increased. In addition, two small cables consisting of 19 parallel steel wires were tested for verification, and the results were consistent with those of the analytical model. The results of this study can be applied to quantify the extent of damage caused by fire and to assess the remaining hanger service life.
    • Download: (2.043Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Test and Analysis of Postfire Fatigue Performance of Steel Wires and Cables

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287858
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorZhaolei Zhang
    contributor authorTong Guo
    contributor authorZhongxiang Liu
    contributor authorShiyuan Wang
    date accessioned2022-12-27T20:42:47Z
    date available2022-12-27T20:42:47Z
    date issued2022/10/01
    identifier other(ASCE)BE.1943-5592.0001938.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287858
    description abstractFire is an accidental, severe hazard for bridges during their lifetime. Hangers in suspension bridges are among the most vulnerable components with respect to the hanger fatigue effect, and fatigue performance after fire exposure is vital to bridge safety. Therefore, a comprehensive assessment of the postfire hanger fatigue property is necessary. In this study, fatigue tests were conducted on steel wires after various elevated temperatures, and a multiparameter Weibull model was adopted to describe the fatigue data. Based on the fatigue life distribution of steel wires and the corresponding parallel systems, the hanger fatigue life was evaluated using the Monte Carlo simulation and order statistics approach, and the S–N curves were obtained. The results demonstrated that the fatigue life of the hanger was significantly lower than the mean life of the individual wires, and degraded as the exposure temperature increased. In addition, two small cables consisting of 19 parallel steel wires were tested for verification, and the results were consistent with those of the analytical model. The results of this study can be applied to quantify the extent of damage caused by fire and to assess the remaining hanger service life.
    publisherASCE
    titleTest and Analysis of Postfire Fatigue Performance of Steel Wires and Cables
    typeJournal Article
    journal volume27
    journal issue10
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001938
    journal fristpage04022096
    journal lastpage04022096_12
    page12
    treeJournal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian