YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Natural Hazards Review
    • View Item
    •   YE&T Library
    • ASCE
    • Natural Hazards Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling Temporal Accessibility of an Urban Road Network during an Extreme Pluvial Flood Event

    Source: Natural Hazards Review:;2022:;Volume ( 023 ):;issue: 004::page 04022032
    Author:
    Robert L. Miller
    DOI: 10.1061/(ASCE)NH.1527-6996.0000586
    Publisher: ASCE
    Abstract: This study presents a model-based framework to assess the time-varying accessibility of a roadway network on a system-wide level during extreme flood events. A regional MIKE 21 hydrodynamic model consisting of 1,912,576 computational points with mesh cell resolutions ranging from 70 to 15 m is utilized to compute regional inundation during an extreme 500-year flood scenario. This approach allows for an explicit accounting of the impact of pluvial flooding on roadway network accessibility. Accessibility conditioned on flood depth is then computed using a raster approximation of the roadway network model employing the flood-fill search method. The approach is demonstrated in the flood-prone low-gradient region of Lafayette, Louisiana, which experienced a devastating flood event in August 2016. The findings suggest that the main evacuation points enjoy a greater degree of accessibility compared to medical facilities within the urban core of the city during the flood peak. Significant improvements in network accessibility can be made by targeted mitigation of specifically flood-prone roadway segments. However, the analysis demonstrates the adverse impacts of such mitigation activities in low-gradient urban floodplain systems when implementing routine drainage compensation steps. The approach provides key insights into the role played by pluvial flooding and flood duration on network accessibility and can help inform emergency response and transportation systems planning and design efforts.
    • Download: (2.335Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling Temporal Accessibility of an Urban Road Network during an Extreme Pluvial Flood Event

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287848
    Collections
    • Natural Hazards Review

    Show full item record

    contributor authorRobert L. Miller
    date accessioned2022-12-27T20:42:31Z
    date available2022-12-27T20:42:31Z
    date issued2022/11/01
    identifier other(ASCE)NH.1527-6996.0000586.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287848
    description abstractThis study presents a model-based framework to assess the time-varying accessibility of a roadway network on a system-wide level during extreme flood events. A regional MIKE 21 hydrodynamic model consisting of 1,912,576 computational points with mesh cell resolutions ranging from 70 to 15 m is utilized to compute regional inundation during an extreme 500-year flood scenario. This approach allows for an explicit accounting of the impact of pluvial flooding on roadway network accessibility. Accessibility conditioned on flood depth is then computed using a raster approximation of the roadway network model employing the flood-fill search method. The approach is demonstrated in the flood-prone low-gradient region of Lafayette, Louisiana, which experienced a devastating flood event in August 2016. The findings suggest that the main evacuation points enjoy a greater degree of accessibility compared to medical facilities within the urban core of the city during the flood peak. Significant improvements in network accessibility can be made by targeted mitigation of specifically flood-prone roadway segments. However, the analysis demonstrates the adverse impacts of such mitigation activities in low-gradient urban floodplain systems when implementing routine drainage compensation steps. The approach provides key insights into the role played by pluvial flooding and flood duration on network accessibility and can help inform emergency response and transportation systems planning and design efforts.
    publisherASCE
    titleModeling Temporal Accessibility of an Urban Road Network during an Extreme Pluvial Flood Event
    typeJournal Article
    journal volume23
    journal issue4
    journal titleNatural Hazards Review
    identifier doi10.1061/(ASCE)NH.1527-6996.0000586
    journal fristpage04022032
    journal lastpage04022032_10
    page10
    treeNatural Hazards Review:;2022:;Volume ( 023 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian