YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Natural Hazards Review
    • View Item
    •   YE&T Library
    • ASCE
    • Natural Hazards Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Efficacy of Damage Data Integration: A Comparative Analysis of Four Major Earthquakes

    Source: Natural Hazards Review:;2022:;Volume ( 023 ):;issue: 004::page 04022026
    Author:
    Sabine Loos
    ,
    Jennifer Levitt
    ,
    Kei Tomozawa
    ,
    Jack Baker
    ,
    David Lallemant
    DOI: 10.1061/(ASCE)NH.1527-6996.0000581
    Publisher: ASCE
    Abstract: Weeks after a disaster, crucial response and recovery decisions require information on the locations and scale of building damage. Geostatistical data integration methods estimate post-disaster damage by calibrating engineering forecasts or remote sensing-derived proxies with limited field measurements. These methods are meant to adapt to building damage and post-earthquake data sources that vary depending on location, but their performances across multiple locations have not yet been empirically evaluated. In this study, we evaluate the generalizability of data integration to various post-earthquake scenarios using damage data produced after four earthquakes: Haiti 2010, New Zealand 2011, Nepal 2015, and Italy 2016. Exhaustive surveys of true damage data were eventually collected for these events, which allowed us to evaluate the performance of data integration estimates of damage through multiple simulations representing a range of conditions of data availability after each earthquake. In all case study locations, we find that integrating forecasts or proxies of damage with field measurements results in a more accurate damage estimate than the current best practice of evaluating these input data separately. In cases when multiple damage data are not available, a map of shaking intensity can serve as the only covariate, though the addition of remote sensing-derived data can improve performance. Even when field measurements are clustered in a small area—a more realistic scenario for reconnaissance teams—damage data integration outperforms alternative damage datasets. Overall, by evaluating damage data integration across contexts and under multiple conditions, we demonstrate how integration is a reliable approach that leverages all existing damage data sources to better reflect the damage observed on the ground. We close by recommending modeling and field surveying strategies to implement damage data integration in-real-time after future earthquakes.
    • Download: (1.963Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Efficacy of Damage Data Integration: A Comparative Analysis of Four Major Earthquakes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287846
    Collections
    • Natural Hazards Review

    Show full item record

    contributor authorSabine Loos
    contributor authorJennifer Levitt
    contributor authorKei Tomozawa
    contributor authorJack Baker
    contributor authorDavid Lallemant
    date accessioned2022-12-27T20:42:29Z
    date available2022-12-27T20:42:29Z
    date issued2022/11/01
    identifier other(ASCE)NH.1527-6996.0000581.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287846
    description abstractWeeks after a disaster, crucial response and recovery decisions require information on the locations and scale of building damage. Geostatistical data integration methods estimate post-disaster damage by calibrating engineering forecasts or remote sensing-derived proxies with limited field measurements. These methods are meant to adapt to building damage and post-earthquake data sources that vary depending on location, but their performances across multiple locations have not yet been empirically evaluated. In this study, we evaluate the generalizability of data integration to various post-earthquake scenarios using damage data produced after four earthquakes: Haiti 2010, New Zealand 2011, Nepal 2015, and Italy 2016. Exhaustive surveys of true damage data were eventually collected for these events, which allowed us to evaluate the performance of data integration estimates of damage through multiple simulations representing a range of conditions of data availability after each earthquake. In all case study locations, we find that integrating forecasts or proxies of damage with field measurements results in a more accurate damage estimate than the current best practice of evaluating these input data separately. In cases when multiple damage data are not available, a map of shaking intensity can serve as the only covariate, though the addition of remote sensing-derived data can improve performance. Even when field measurements are clustered in a small area—a more realistic scenario for reconnaissance teams—damage data integration outperforms alternative damage datasets. Overall, by evaluating damage data integration across contexts and under multiple conditions, we demonstrate how integration is a reliable approach that leverages all existing damage data sources to better reflect the damage observed on the ground. We close by recommending modeling and field surveying strategies to implement damage data integration in-real-time after future earthquakes.
    publisherASCE
    titleEfficacy of Damage Data Integration: A Comparative Analysis of Four Major Earthquakes
    typeJournal Article
    journal volume23
    journal issue4
    journal titleNatural Hazards Review
    identifier doi10.1061/(ASCE)NH.1527-6996.0000581
    journal fristpage04022026
    journal lastpage04022026_18
    page18
    treeNatural Hazards Review:;2022:;Volume ( 023 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian