YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance Warning of Bridges under Train Actions through Equivalent Frequency Response Functions

    Source: Journal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 010::page 04022091
    Author:
    Xiao-Mei Yang
    ,
    Ting-Hua Yi
    ,
    Chun-Xu Qu
    ,
    Hong-Nan Li
    ,
    Hua Liu
    DOI: 10.1061/(ASCE)BE.1943-5592.0001925
    Publisher: ASCE
    Abstract: Structural health monitoring of bridges based on train-induced vibrations has attracted extensive attention and takes advantage of the high-magnitude and regularly spaced features of trainloads. However, the monitoring process is restricted because the relationship between bridge characteristics and the dynamic features of train-induced vibration responses is not well represented. In this study, train-induced acceleration characteristics of a bridge are investigated, and the relationship between the train speed and spectral amplitude of the bridge acceleration at a frequency equal to the ratio of the speed to carriage length is revealed. Based on the phenomenon that the speed–amplitude correlation trend is consistent with the structural frequency response function (FRF), a dynamic index called the equivalent frequency response function (EFRF) is proposed. The evolution rules of the EFRF curve with varying natural frequencies and train loads are distinguished, and the structural performance variation can be determined according to the relationship between the structural stiffness, natural frequencies, and EFRF. Because the speed–amplitude points are scattered due to the train configuration parameters and measurement noise, the EFRF curve should be fitted first. In addition, the normal fluctuation in the speed–amplitude points is limited using the local Shewhart control chart, considering the heteroscedasticity of the speed–amplitude points. Then, speed–amplitude points that exceed the control limits are used to identify abnormal train-induced vibrations. Finally, the monitoring data for a railway bridge with multiple lanes are considered to verify the proposed method. The results show that the abnormal train-induced vibration warning based on speed–amplitude points have a similar performance to that based on the speed–acceleration correlation, but the causes of the abnormal vibration can be identified explicitly only with the speed–amplitude correlation.
    • Download: (2.216Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance Warning of Bridges under Train Actions through Equivalent Frequency Response Functions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287814
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorXiao-Mei Yang
    contributor authorTing-Hua Yi
    contributor authorChun-Xu Qu
    contributor authorHong-Nan Li
    contributor authorHua Liu
    date accessioned2022-12-27T20:41:30Z
    date available2022-12-27T20:41:30Z
    date issued2022/10/01
    identifier other(ASCE)BE.1943-5592.0001925.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287814
    description abstractStructural health monitoring of bridges based on train-induced vibrations has attracted extensive attention and takes advantage of the high-magnitude and regularly spaced features of trainloads. However, the monitoring process is restricted because the relationship between bridge characteristics and the dynamic features of train-induced vibration responses is not well represented. In this study, train-induced acceleration characteristics of a bridge are investigated, and the relationship between the train speed and spectral amplitude of the bridge acceleration at a frequency equal to the ratio of the speed to carriage length is revealed. Based on the phenomenon that the speed–amplitude correlation trend is consistent with the structural frequency response function (FRF), a dynamic index called the equivalent frequency response function (EFRF) is proposed. The evolution rules of the EFRF curve with varying natural frequencies and train loads are distinguished, and the structural performance variation can be determined according to the relationship between the structural stiffness, natural frequencies, and EFRF. Because the speed–amplitude points are scattered due to the train configuration parameters and measurement noise, the EFRF curve should be fitted first. In addition, the normal fluctuation in the speed–amplitude points is limited using the local Shewhart control chart, considering the heteroscedasticity of the speed–amplitude points. Then, speed–amplitude points that exceed the control limits are used to identify abnormal train-induced vibrations. Finally, the monitoring data for a railway bridge with multiple lanes are considered to verify the proposed method. The results show that the abnormal train-induced vibration warning based on speed–amplitude points have a similar performance to that based on the speed–acceleration correlation, but the causes of the abnormal vibration can be identified explicitly only with the speed–amplitude correlation.
    publisherASCE
    titlePerformance Warning of Bridges under Train Actions through Equivalent Frequency Response Functions
    typeJournal Article
    journal volume27
    journal issue10
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001925
    journal fristpage04022091
    journal lastpage04022091_13
    page13
    treeJournal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian