YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of Waste Tire Pyrolytic Oil as a Rejuvenation Agent for Unmodified, Polymer-Modified, and Rubber-Modified Aged Asphalt Binders

    Source: Journal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 010::page 04022246
    Author:
    Ankush Kumar
    ,
    Rajan Choudhary
    ,
    Abhinay Kumar
    DOI: 10.1061/(ASCE)MT.1943-5533.0004400
    Publisher: ASCE
    Abstract: This study evaluated tire pyrolytic oil (TPO) derived from waste tire pyrolysis as a rejuvenating agent for three types of aged asphalt binders (unmodified, polymer-modified, and crumb rubber–modified). Gas chromatography–mass spectrometry (GC–MS) was performed to identify chemical compounds present in TPO. The rheological characteristics of all binders were examined through the complex viscosity–frequency profile, zero-shear viscosity, failure temperature, Black space diagrams, Cole–Cole plots, Superpave fatigue parameter, Glover–Rowe parameter, and linear amplitude sweep (LAS) tests. Mass loss was also determined for the rejuvenated binders. All binders were subjected to Fourier transform infrared (FTIR) analysis, and sulfoxide and carbonyl indices were computed. Atomic force microscopy (AFM) was conducted to study the effect of TPO on the micromorphology of the binders. The normalized Euclidean distance approach was used to rank the rejuvenated binders with respect to the proximity of their rheological and FTIR characteristics to that of the unaged binder. The use of TPO as a rejuvenating agent enabled the aged binders to achieve properties comparable to those of the unaged asphalt binder. The AFM-based rejuvenation index (RI) indicated a good potential of TPO as a rejuvenator. The results of the binder rheological parameters and the FTIR indicators investigated in the study indicated that a 9% dosage of TPO as a rejuvenating agent was the most effective.
    • Download: (8.302Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of Waste Tire Pyrolytic Oil as a Rejuvenation Agent for Unmodified, Polymer-Modified, and Rubber-Modified Aged Asphalt Binders

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287777
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorAnkush Kumar
    contributor authorRajan Choudhary
    contributor authorAbhinay Kumar
    date accessioned2022-12-27T20:40:25Z
    date available2022-12-27T20:40:25Z
    date issued2022/10/01
    identifier other(ASCE)MT.1943-5533.0004400.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287777
    description abstractThis study evaluated tire pyrolytic oil (TPO) derived from waste tire pyrolysis as a rejuvenating agent for three types of aged asphalt binders (unmodified, polymer-modified, and crumb rubber–modified). Gas chromatography–mass spectrometry (GC–MS) was performed to identify chemical compounds present in TPO. The rheological characteristics of all binders were examined through the complex viscosity–frequency profile, zero-shear viscosity, failure temperature, Black space diagrams, Cole–Cole plots, Superpave fatigue parameter, Glover–Rowe parameter, and linear amplitude sweep (LAS) tests. Mass loss was also determined for the rejuvenated binders. All binders were subjected to Fourier transform infrared (FTIR) analysis, and sulfoxide and carbonyl indices were computed. Atomic force microscopy (AFM) was conducted to study the effect of TPO on the micromorphology of the binders. The normalized Euclidean distance approach was used to rank the rejuvenated binders with respect to the proximity of their rheological and FTIR characteristics to that of the unaged binder. The use of TPO as a rejuvenating agent enabled the aged binders to achieve properties comparable to those of the unaged asphalt binder. The AFM-based rejuvenation index (RI) indicated a good potential of TPO as a rejuvenator. The results of the binder rheological parameters and the FTIR indicators investigated in the study indicated that a 9% dosage of TPO as a rejuvenating agent was the most effective.
    publisherASCE
    titleEvaluation of Waste Tire Pyrolytic Oil as a Rejuvenation Agent for Unmodified, Polymer-Modified, and Rubber-Modified Aged Asphalt Binders
    typeJournal Article
    journal volume34
    journal issue10
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004400
    journal fristpage04022246
    journal lastpage04022246_20
    page20
    treeJournal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian