YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hazardous, Toxic, and Radioactive Waste
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hazardous, Toxic, and Radioactive Waste
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Biosorption of Lead II Using <i>Foeniculum vulgare</i> in the Aqueous Phase

    Source: Journal of Hazardous, Toxic, and Radioactive Waste:;2022:;Volume ( 026 ):;issue: 004::page 06022001
    Author:
    Harshita Singh
    ,
    Mategaonkar Meenal
    DOI: 10.1061/(ASCE)HZ.2153-5515.0000709
    Publisher: ASCE
    Abstract: Lead in drinking water is a metabolic poison that causes mental retardation, temporary cerebral damage, and reproductive problems. Chemical precipitation, membrane technology, and ion exchange are some of the expensive and extravagant techniques used to eradicate lead from water. The process of accumulating heavy metals from wastewater using biological materials is referred to as biosorption. In this study, biosorption is examined using three biomasses obtained from Foeniculum vulgare (fennel), that is, its seeds, leaves, and stem, to treat lead-contaminated water. Physicochemical parameters, such as initial concentration of lead (II), contact time, biomass quantity, and pH of the solution are assessed. The optimum contact time to achieve equilibrium is found to be 45 min. The optimum biosorbent dosage, pH, and initial metal concentration are found to be 3.34 g/L, 6.4, and 1 mg/L, respectively. Langmuir, Freundlich, and Temkin models are used for modeling adsorption equilibrium isotherms. The Freundlich model provides the best fit for the biosorption process, with a correlation coefficient R2 greater than 0.999 for all three biosorbents. Adsorption kinetics can be described using pseudo first- and second-order kinetic models. The experimental data fit better with the pseudo second-order kinetic model, as the deviations in the experimental and calculated values of biosorption capacities at the time of equilibrium are 5.02%, 4.15%, and 4.66%, respectively, for Foeniculum vulgare seeds, leaves, and stem as biomasses. The process is found to be exothermic and spontaneous, as indicated with a negative change of Gibbs energy value of −1.958, −3.224, and −2.608 KJ mol−1, respectively, for fennel seeds, leaves, and stem. The study shows that the powdered form of Foeniculum vulgare seeds, leaves, and stem is a moderately effective, feasible, and economical adsorbent for the removal of lead from water.
    • Download: (851.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Biosorption of Lead II Using <i>Foeniculum vulgare</i> in the Aqueous Phase

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287720
    Collections
    • Journal of Hazardous, Toxic, and Radioactive Waste

    Show full item record

    contributor authorHarshita Singh
    contributor authorMategaonkar Meenal
    date accessioned2022-12-27T20:39:01Z
    date available2022-12-27T20:39:01Z
    date issued2022/10/01
    identifier other(ASCE)HZ.2153-5515.0000709.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287720
    description abstractLead in drinking water is a metabolic poison that causes mental retardation, temporary cerebral damage, and reproductive problems. Chemical precipitation, membrane technology, and ion exchange are some of the expensive and extravagant techniques used to eradicate lead from water. The process of accumulating heavy metals from wastewater using biological materials is referred to as biosorption. In this study, biosorption is examined using three biomasses obtained from Foeniculum vulgare (fennel), that is, its seeds, leaves, and stem, to treat lead-contaminated water. Physicochemical parameters, such as initial concentration of lead (II), contact time, biomass quantity, and pH of the solution are assessed. The optimum contact time to achieve equilibrium is found to be 45 min. The optimum biosorbent dosage, pH, and initial metal concentration are found to be 3.34 g/L, 6.4, and 1 mg/L, respectively. Langmuir, Freundlich, and Temkin models are used for modeling adsorption equilibrium isotherms. The Freundlich model provides the best fit for the biosorption process, with a correlation coefficient R2 greater than 0.999 for all three biosorbents. Adsorption kinetics can be described using pseudo first- and second-order kinetic models. The experimental data fit better with the pseudo second-order kinetic model, as the deviations in the experimental and calculated values of biosorption capacities at the time of equilibrium are 5.02%, 4.15%, and 4.66%, respectively, for Foeniculum vulgare seeds, leaves, and stem as biomasses. The process is found to be exothermic and spontaneous, as indicated with a negative change of Gibbs energy value of −1.958, −3.224, and −2.608 KJ mol−1, respectively, for fennel seeds, leaves, and stem. The study shows that the powdered form of Foeniculum vulgare seeds, leaves, and stem is a moderately effective, feasible, and economical adsorbent for the removal of lead from water.
    publisherASCE
    titleBiosorption of Lead II Using Foeniculum vulgare in the Aqueous Phase
    typeJournal Article
    journal volume26
    journal issue4
    journal titleJournal of Hazardous, Toxic, and Radioactive Waste
    identifier doi10.1061/(ASCE)HZ.2153-5515.0000709
    journal fristpage06022001
    journal lastpage06022001_7
    page7
    treeJournal of Hazardous, Toxic, and Radioactive Waste:;2022:;Volume ( 026 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian