YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Fast and Efficient Method for Multiobjective Aerodynamic Optimization of a Civil Aircraft Fuselage

    Source: Journal of Aerospace Engineering:;2022:;Volume ( 035 ):;issue: 006::page 04022096
    Author:
    S. V. Rohani
    ,
    A. Jahangirian
    DOI: 10.1061/(ASCE)AS.1943-5525.0001494
    Publisher: ASCE
    Abstract: This study presents a new method for aerodynamic optimization of a civil aircraft fuselage. Typically, the fuselage is designed for minimum drag force at cruise conditions, which is essential for determining the flight cost. Evolutionary optimization methods, as a powerful tool, require the accurate computations of flows around several hundreds of candidate geometries, which in turn are too costly and time-consuming. One strategy is to use two-dimensional simulations that reduce the computational cost by at least one order of magnitude. This approach was applied in the current work, and the results were obtained with the aim of minimizing the drag coefficient and maximizing the lift coefficient. A genetic algorithm (GA) was used for shape optimization, and the objective function evaluation was carried out using computational fluid dynamics (CFD). A fuselage shape parameterization method is presented that accounts for important flow features. The 150-seat aircraft model designed in Amirkabir University of Technology was considered as a reference body. In the first step, the optimization is carried out for the single objective of minimizing the drag coefficient. Then, the multiobjective optimization is performed with the simultaneous drag coefficient minimization and lift coefficient maximization. Finally, the two-dimensional (2D) side view of the optimum fuselages is used for generation of the corresponding three-dimensional (3D) geometry. The results show that such 3D optimum fuselage reduced the drag coefficient by about 11% while increasing the lift coefficient by 29% in comparison with the original geometry.
    • Download: (5.058Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Fast and Efficient Method for Multiobjective Aerodynamic Optimization of a Civil Aircraft Fuselage

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287714
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorS. V. Rohani
    contributor authorA. Jahangirian
    date accessioned2022-12-27T20:38:52Z
    date available2022-12-27T20:38:52Z
    date issued2022/11/01
    identifier other(ASCE)AS.1943-5525.0001494.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287714
    description abstractThis study presents a new method for aerodynamic optimization of a civil aircraft fuselage. Typically, the fuselage is designed for minimum drag force at cruise conditions, which is essential for determining the flight cost. Evolutionary optimization methods, as a powerful tool, require the accurate computations of flows around several hundreds of candidate geometries, which in turn are too costly and time-consuming. One strategy is to use two-dimensional simulations that reduce the computational cost by at least one order of magnitude. This approach was applied in the current work, and the results were obtained with the aim of minimizing the drag coefficient and maximizing the lift coefficient. A genetic algorithm (GA) was used for shape optimization, and the objective function evaluation was carried out using computational fluid dynamics (CFD). A fuselage shape parameterization method is presented that accounts for important flow features. The 150-seat aircraft model designed in Amirkabir University of Technology was considered as a reference body. In the first step, the optimization is carried out for the single objective of minimizing the drag coefficient. Then, the multiobjective optimization is performed with the simultaneous drag coefficient minimization and lift coefficient maximization. Finally, the two-dimensional (2D) side view of the optimum fuselages is used for generation of the corresponding three-dimensional (3D) geometry. The results show that such 3D optimum fuselage reduced the drag coefficient by about 11% while increasing the lift coefficient by 29% in comparison with the original geometry.
    publisherASCE
    titleA Fast and Efficient Method for Multiobjective Aerodynamic Optimization of a Civil Aircraft Fuselage
    typeJournal Article
    journal volume35
    journal issue6
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0001494
    journal fristpage04022096
    journal lastpage04022096_13
    page13
    treeJournal of Aerospace Engineering:;2022:;Volume ( 035 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian