YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Composite Adaptive Control and Identification of MIMO Aeroelastic System with Enhanced Parameter Excitation

    Source: Journal of Aerospace Engineering:;2022:;Volume ( 035 ):;issue: 006::page 04022093
    Author:
    Keum W. Lee
    ,
    Sahjendra N. Singh
    DOI: 10.1061/(ASCE)AS.1943-5525.0001490
    Publisher: ASCE
    Abstract: This paper develops a composite adaptive control law for the stabilization and parameter identification of a two-degree-of-freedom aeroelastic system, which is equipped with leading- and trailing-edge flaps. The multiple-input multiple-output (MIMO) model represents the plunge and pitch dynamics of a prototypical wing section. It is assumed that all model parameters, except the signs of the principal minors of the input matrix, are unknown. The composite adaptive control system includes a control module and a composite parameter identifier for the estimation of parameters. The parameter estimation law is synthesized using information on the tracking error, as well as on a model prediction error. In addition, unlike works published in the literature for aeroelastic systems, the novelty of this paper lies in the inclusion of a regressor-dependent matrix integral in the parameter adaptation law. By the Lyapunov analysis, it is shown that the origin of the closed-loop system is stable. Interestingly, the regressor matrix’s integral component contributes a negative semidefinite nonincreasing quadratic function of the parameter error in the derivative of the Lyapunov function. This, in turn, enhances the stability and parameter convergence properties of the closed-loop system. Simulation results show that this composite adaptive control system accomplishes simultaneous suppression of limit cycle oscillations (LCOs) and identification of parameters despite gust input, unmodeled actuator dynamics, and time-varying nonlinearity.
    • Download: (1.580Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Composite Adaptive Control and Identification of MIMO Aeroelastic System with Enhanced Parameter Excitation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287681
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorKeum W. Lee
    contributor authorSahjendra N. Singh
    date accessioned2022-12-27T20:37:45Z
    date available2022-12-27T20:37:45Z
    date issued2022/11/01
    identifier other(ASCE)AS.1943-5525.0001490.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287681
    description abstractThis paper develops a composite adaptive control law for the stabilization and parameter identification of a two-degree-of-freedom aeroelastic system, which is equipped with leading- and trailing-edge flaps. The multiple-input multiple-output (MIMO) model represents the plunge and pitch dynamics of a prototypical wing section. It is assumed that all model parameters, except the signs of the principal minors of the input matrix, are unknown. The composite adaptive control system includes a control module and a composite parameter identifier for the estimation of parameters. The parameter estimation law is synthesized using information on the tracking error, as well as on a model prediction error. In addition, unlike works published in the literature for aeroelastic systems, the novelty of this paper lies in the inclusion of a regressor-dependent matrix integral in the parameter adaptation law. By the Lyapunov analysis, it is shown that the origin of the closed-loop system is stable. Interestingly, the regressor matrix’s integral component contributes a negative semidefinite nonincreasing quadratic function of the parameter error in the derivative of the Lyapunov function. This, in turn, enhances the stability and parameter convergence properties of the closed-loop system. Simulation results show that this composite adaptive control system accomplishes simultaneous suppression of limit cycle oscillations (LCOs) and identification of parameters despite gust input, unmodeled actuator dynamics, and time-varying nonlinearity.
    publisherASCE
    titleComposite Adaptive Control and Identification of MIMO Aeroelastic System with Enhanced Parameter Excitation
    typeJournal Article
    journal volume35
    journal issue6
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0001490
    journal fristpage04022093
    journal lastpage04022093_17
    page17
    treeJournal of Aerospace Engineering:;2022:;Volume ( 035 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian