YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Ultimate Bearing Capacity of Helical Piles as Electric Transmission Tower Foundations in Unsaturated Soils: Analytical, Numerical, and Experimental Investigations

    Source: International Journal of Geomechanics:;2022:;Volume ( 022 ):;issue: 011::page 04022194
    Author:
    Amir Akbari Garakani
    ,
    Kay Armin Serjoie
    DOI: 10.1061/(ASCE)GM.1943-5622.0002585
    Publisher: ASCE
    Abstract: In this paper, the compressive and tensile ultimate bearing capacity of helical piles, in the load range required for designing 63-kV transmission towers, are studied by conducting analytical and numerical investigations. In this light, an explicit easy-to-use analytical framework was developed by considering the unsaturated soil condition that was validated against experimental records. Also, finite-element models were constructed for fully saturated and fully dry soil conditions. Then, to validate the analytical and numerical solutions in fully saturated and fully dry soil conditions, three compressive and one tensile field tests were carried out, and the results were compared quantitatively with analytical and numerical calculations. Comparative studies showed that the analytical, numerical, and experimental results have a high level of conformity. In accordance with the load ranges of transmission towers, analytical parametric studies were conducted for different geometrical aspects of the helical piles in different soils. Also, for two typical unsaturated sand and clay soils, the ultimate load of helical piles was calculated versus matric suction. Moreover, a vast numerical parametric study was performed to investigate the role of the geometrical aspects of helical piles and soil characteristics on the load-transfer mechanism and ultimate bearing-capacity values for helical piles driven in sandy and undrained saturated clayey soils. Results showed that the maximum load capacity of helical piles occurred in a matric suction less than that of a fully dry soil. In addition, the soil type and the geometrical aspects of the helical pile were shown to have significant effects on the load–displacement behavior and ultimate bearing-capacity values.
    • Download: (3.921Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Ultimate Bearing Capacity of Helical Piles as Electric Transmission Tower Foundations in Unsaturated Soils: Analytical, Numerical, and Experimental Investigations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287660
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorAmir Akbari Garakani
    contributor authorKay Armin Serjoie
    date accessioned2022-12-27T20:36:32Z
    date available2022-12-27T20:36:32Z
    date issued2022/11/01
    identifier other(ASCE)GM.1943-5622.0002585.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287660
    description abstractIn this paper, the compressive and tensile ultimate bearing capacity of helical piles, in the load range required for designing 63-kV transmission towers, are studied by conducting analytical and numerical investigations. In this light, an explicit easy-to-use analytical framework was developed by considering the unsaturated soil condition that was validated against experimental records. Also, finite-element models were constructed for fully saturated and fully dry soil conditions. Then, to validate the analytical and numerical solutions in fully saturated and fully dry soil conditions, three compressive and one tensile field tests were carried out, and the results were compared quantitatively with analytical and numerical calculations. Comparative studies showed that the analytical, numerical, and experimental results have a high level of conformity. In accordance with the load ranges of transmission towers, analytical parametric studies were conducted for different geometrical aspects of the helical piles in different soils. Also, for two typical unsaturated sand and clay soils, the ultimate load of helical piles was calculated versus matric suction. Moreover, a vast numerical parametric study was performed to investigate the role of the geometrical aspects of helical piles and soil characteristics on the load-transfer mechanism and ultimate bearing-capacity values for helical piles driven in sandy and undrained saturated clayey soils. Results showed that the maximum load capacity of helical piles occurred in a matric suction less than that of a fully dry soil. In addition, the soil type and the geometrical aspects of the helical pile were shown to have significant effects on the load–displacement behavior and ultimate bearing-capacity values.
    publisherASCE
    titleUltimate Bearing Capacity of Helical Piles as Electric Transmission Tower Foundations in Unsaturated Soils: Analytical, Numerical, and Experimental Investigations
    typeJournal Article
    journal volume22
    journal issue11
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0002585
    journal fristpage04022194
    journal lastpage04022194_22
    page22
    treeInternational Journal of Geomechanics:;2022:;Volume ( 022 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian